Dust and gas in the early universe

July 31, 2008
The computer simulation designed by Dr. Yoshida et al. demonstrates how gas and dust came together in the early universe to form the first stars after the Big Bang. Photo provided by Dr. Naoki Yoshida of Nagoya University in Japan via Science-AAAS

Researchers believe that our universe began with the Big Bang about 13 billion years ago, and that soon after that event, matter began to form as small dust grains and gases. How the first stars formed from this dust and gas has been a burning question for years, but a state-of-the-art computer simulation now offers the most detailed picture yet of how these first stars in the universe came into existence, researchers say.

These findings will be published by the journal Science on Friday, 1 August.

The composition of the early universe was quite different from that of today, and the physics that governed the early universe were also somewhat simpler. Dr. Naoki Yoshida and colleagues in Japan and the U.S. incorporated these conditions of the early universe, sometimes referred to as the "cosmic dark ages," to simulate the formation of an astronomical object that would eventually shine its light into this darkness.

The result is a detailed description of the formation of a protostar -- the early stage of a massive primordial star of our universe -- and the researchers' computer simulation, which has been called a "cosmic Rosetta Stone," sets the bar for further investigation into the star formation process. The question of how the first stars evolved is so important because their formations and eventual explosions provided the seeds for subsequent stars to come into being.

According to their simulation, gravity acted on minute density variations in matter, gases, and the mysterious "dark matter" of the universe after the Big Bang in order to form this early stage of a star -- a protostar with a mass of just one percent of our sun. The simulation reveals how pre-stellar gases would have actually evolved under the simpler physics of the early universe to form this protostar. Dr. Yoshida's simulation also shows that the protostar would likely evolve into a massive star capable of synthesizing heavy elements, not just in later generations of stars, but soon after the Big Bang.

"This general picture of star formation, and the ability to compare how stellar objects form in different time periods and regions of the universe, will eventually allow investigation into the origins of life and planets," said Lars Hernquist, a Professor of Astronomy at Harvard University and a co-author of this latest report. "The abundance of elements in the universe has increased as stars have accumulated," he says, "and the formation and destruction of stars continues to spread these elements further across the universe. So when you think about it, all of the elements in our bodies originally formed from nuclear reactions in the centers of stars, long ago."

Their simulation of the birth of a protostar in the early universe signifies a key step toward the ambitious goal of piecing together the formation of an entire primordial star and of predicting the mass and properties of these first stars of the universe. More powerful computers, more physical data, and an even larger range will be needed for further calculations and simulations, but these researchers hope to eventually extend this simulation to the point of nuclear reaction initiation -- when a stellar object becomes a true star.

"Dr. Yoshida has taken the study of primordial star formation to a new level with this simulation, but it still gets us only to the halfway point towards our final goal. It is like laying the foundation of a skyscraper," said Volker Bromm, Assistant Professor of Astronomy at the University of Texas, Austin and the author of a companion article. "We must continue our studies in this area to understand how the initially tiny protostar grows, layer by layer, to eventually form a massive star. But here, the physics become much more complicated and even more computational resources are needed."

Source: American Association for the Advancement of Science

Explore further: Deep in Estonia's woods, Mother Nature gets a megaphone

Related Stories

Cost savings from add-on pricing may result in profit loss

September 29, 2015

When Dr. Xianjun Geng traveled to a conference in San Francisco in 2009, he booked a four-star hotel on a discount travel website for $80 a night. Upon his arrival, he learned of some unexpected add-on fees, including $40 ...

Can you kill a star with iron?

September 29, 2015

Since the energy required to fuse iron is more than the energy that you get from doing it, could you use iron to kill a star like our sun?

Recommended for you

A mission to a metal world—The Psyche mission

October 9, 2015

In their drive to set exploration goals for the future, NASA's Discovery Program put out the call for proposals for their thirteenth Discovery mission in February 2014. After reviewing the 27 initial proposals, a panel of ...

What are white holes?

October 9, 2015

Black holes are created when stars die catastrophically in a supernova. So what in the universe is a white hole?

Image: Pluto's blue sky

October 9, 2015

Pluto's haze layer shows its blue color in this picture taken by the New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC). The high-altitude haze is thought to be similar in nature to that seen at Saturn's moon ...

Blue skies, frozen water detected on Pluto

October 8, 2015

Pluto has blue skies and patches of frozen water, according to the latest data out Thursday from NASA's unmanned New Horizons probe, which made a historic flyby of the dwarf planet in July.

How to prepare for Mars? NASA consults Navy sub force

October 5, 2015

As NASA contemplates a manned voyage to Mars and the effects missions deeper into space could have on astronauts, it's tapping research from another outfit with experience sending people to the deep: the U.S. Navy submarine ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Aug 06, 2008
Why not search Cosmology with proper Comprehension. New Knowledge dawns.
Cosmology is a borderland between science and Philosophy
Cosmology deals with Multi-Universe concepts and the Universe as part of Cosmos.
Cosmology details Creation, stability and dissolution of the Universe or parts thereof.
Cosmology covers broad Prime drive functions and links :
1. Cosmology in Vedas 2.Cosmology in Philosophy 3.Science of Philosophy
4. Basic Philosophy
1. Basic Science 2. Philosophy of Science 3.Cosmogony-Astrophysics
4. Cosmology -Present Day under Revision
1.Nature 2.Divine Function in Nature 3. Divine Universe 4.Cosmos Divine

Key Words: Cosmology Definition, Cosmology Primer, Cosmology Drive,
Cosmology Science, cosmology Vedas, Cosmology Philosophy, Cosmology Nature,
Cosmic Divine Function, Cosmology interlinks, Cosmology Space Science,
Cosmology Knowledge Base, Knowledge Expansion, creation in the Universe,
Stability of the Universe , Dissolution of the part of the Universe
Heart of the Universe-Nov 2006 -Book By Vidyardhi Nanduri
Copy Rights TXU 1-364-245 -
The Science in Philosophy- Pridhvi Viswam Asya Dharineem Cosmos yoga vision series-II-
cover upto 10^5 Light Years %u2014 Centre of the Universe [Vidyardhi Nanduri]
Dynamic Universe beyond the Centre of the Universe introduces new concepts as well
COSMOLOGY VEDAS-Interlinks-FREE DOWNLOAD : http://www.buymye...kId=1422

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.