Researcher shows evolution of milkweed defense system

July 22, 2008
Researcher shows evolution of milkweed defense system
A monarch butterfly caterpillar gets ready to devour a milkweed leaf. Before feeding, the caterpillar disarms the plant's natural defense system by cutting the milkweed's veins that deliver a toxic and sticky latex. Credit: Anurag Agrawal

(PhysOrg.com) -- The adage that your enemies know your weaknesses best is especially true in the case of plants and predators that have co-evolved: As the predators evolve new strategies for attack, plants counter with their own unique defenses.

Milkweed is the latest example of this response, according to Cornell research suggesting that plant may be shifting away from elaborate defenses against specialized caterpillars toward a more energy-efficient approach. Genetic analysis reveals an evolutionary trend for milkweed plants away from resisting predators to putting more effort into repairing themselves faster than caterpillars -- particularly the monarch butterfly caterpillar -- can eat them.

"An important question with co-evolution is where does it end?" said Anurag Agrawal, Cornell associate professor of ecology and evolutionary biology and lead author of a paper in the current issue of the Proceedings of the National Academy of Sciences. "One answer is when it becomes too costly. Some plants seem to have shifted away from resisting herbivory [plant eating] and have taken that same energy and used it to repair themselves."

The paper is important because it sheds light on key theories of co-evolution, claiming that pressure by foraging insects makes plants diversify as they evolve new defensive strategies and that such diversification follows trends in one direction or another, said Agrawal.

Milkweed species have evolved elaborate resistance strategies to fight off caterpillars that eat their leaves. These include hairs on their leaves, heart poisons called cardenolides in their tissues and milky-white toxic latex that pours from the plants' tubes. A caterpillar's bite into a milkweed leaf leads to a flood of latex that is "like getting a gallon of sticky paint thrown into your face," said Agrawal.

Some caterpillars, in turn, have adapted by shaving the leaf, cutting a leaf's veins in a circle and then eating in the middle where the latex doesn't flow. Also, the monarch caterpillar has become immune to the cardenolides.

Using DNA sequence data to look at relationships between 38 species of milkweed, Agrawal and colleague Mark Fishbein, a Portland State University biologist, found evolutionary declines in milkweed's three most important resistance traits (hairs, cardenolides and latex) and an escalation in the plant's ability to regrow.

Agrawal was surprised, he said, to find that the plant became more tolerant rather than more diverse in its defenses. The reason, he speculated, could be because as its predators have become so specialized, the plant was better off choosing a new defensive tactic "to tolerate the herbivory damage instead of resisting it." It is unknown whether such strategies have also evolved in animals trying to evade parasites.

The findings address questions about plant evolution, biodiversity and keystone species and may give plant scientists clues about profitable pest control strategies.

Provided by Cornell University

Explore further: Summer fruits depend on pollinators, but where have all the bees gone?

Related Stories

Worm pheromones trigger plant defenses, study finds

July 24, 2015

Plants can sense parasitic roundworms in the soil by picking up on their chemical signals, a team of researchers at the Boyce Thompson Institute for Plant Research (BTI), on the Cornell University campus, has found.

Biologist Berry Brosi on Obama's 'plan bee'

June 16, 2015

President Obama recently launched perhaps the most ambitious national plan ever aimed at protecting insects. The National Strategy to Promote the Health of Honeybees and Other Pollinators calls for an "all hands on deck" ...

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

Shedding light on millipede evolution

August 2, 2015

As an National Science Foundation (NSF)-funded entomologist, Virginia Tech's Paul Marek has to spend much of his time in the field, hunting for rare and scientifically significant species. He's provided NSF with an inside ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

no1nose
not rated yet Jul 22, 2008
Is this really evolution? The ability to adapt doesn't sound like evolution to me.
axemaster
5 / 5 (1) Jul 23, 2008
Adaptation across generations through genetic changes are exactly what evolution is supposed to be.
victor133
not rated yet Jul 23, 2008
It is very nice article about predators evolve new strategies for attack, plants counter with their own unique defenses. This information is very important for me. Thanks for information.
__________________________
victor
Addiction Recovery South Dakota


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.