Researchers distinguish waves from mine collapses from other seismic activities

July 10, 2008

Researchers have devised a technology that can distinguish mine collapses from other seismic activity. Using the large seismic disturbance associated with the Crandall Canyon mine collapse last August, Lawrence Livermore National Laboratory scientists and colleagues from the Berkeley Seismological Laboratory at UC Berkeley applied a method developed to detect underground nuclear weapons tests to quickly examine the seismic recordings of the event and determine whether that source was most likely from a collapse.

They also found an additional string of secondary surface seismic waves that occurred when the mine collapsed, which are like no other mine collapse events in recent history. The new research appears in the July 11 edition of the journal Science.

The tragic collapse of a Utah coal mine on Aug. 6 resulted in the deaths of six miners. Ten days later, another collapse killed three rescue workers.

The event was recorded on the local network of seismic stations operated by the U.S. Geological Survey as well as the National Science Foundation Earthscope USArray stations. The collapse registered as a 3.9 magnitude event.

"Our group had already been working on a full seismic waveform matching technique as a means to distinguish between nuclear explosions, earthquakes and collapse events by their seismic signals," said Bill Walter, one of the LLNL researchers.

The new study could help researchers better differentiate underground nuclear tests from earthquakes, mine collapses, mine blasts and other events that generate seismic waves.

UC Berkeley graduate student and LLNL Lawrence Scholar Sean Ford was able to quickly collect the data from the Crandall Canyon seismograms at the time and plug it into the Laboratory algorithm that pointed to a collapse rather than an earthquake.

"These results were posted within a few days after the event and were helpful in resolving the source of the magnitude 3.9 seismic signal," Ford said.

The new technique compares model seismograms to the observed seismograms at local to regional distances (0-1,500 kilometers) at intermediate periods (five to 50 seconds).

Another notable fact about the collapse: The team detected Love waves (also named Q waves - surface seismic waves that cause horizontal shifting of the earth). Typically small in instances such as large mine collapses or hole collapses that sometimes follow nuclear tests, Walter said the Love waves from the Crandall Canyon collapse are "larger than expected for a pure vertical collapse due to gravity."

Though the cause of the Love waves is not fully known, there are several theories, according to Walter.

"One speculative explanation consistent with the data is that the collapse was uneven, with one side closing more than the other," he said. But he said further studies are necessary.

Ford said the Crandall Canyon event was relatively small, magnitude wise. "The fact that we could identify the Crandall Canyon event from its seismic signature gives us confidence that it would be possible to identify even relatively small nuclear explosions using this technique."

"We are excited about the potential of this regional seismic full waveform matching technique and are continuing to develop and test it on other events in others parts of the world to fully understand it," Walter said.

Source: Lawrence Livermore National Laboratory

Explore further: Earthquake baseline set to inform future fracking

Related Stories

Earthquake baseline set to inform future fracking

September 8, 2015

Seismic activity across the UK has been analysed for the first time to set a national baseline for earthquakes caused by human activity ahead of any future decisions around fracking.

Mine disaster: Hundreds of aftershocks

April 19, 2013

A new University of Utah study has identified hundreds of previously unrecognized small aftershocks that happened after Utah's deadly Crandall Canyon mine collapse in 2007. The aftershocks suggest the collapse was as big ...

Scientists develop new approach to mine disasters

March 26, 2009

( -- University of Utah scientists devised a new way to find miners trapped by cave-ins. The method involves installing iron plates and sledgehammers at regular intervals inside mines, and sensitive listening ...

Fatal mine collapse covered 50 acres

June 2, 2008

New calculations show that the deadly Crandall Canyon mine collapse – which registered as a magnitude-3.9 earthquake – began near where miners were excavating coal and quickly grew to a 50-acre cave-in, University of ...

Deadly Mine 'Bump' was Recorded as Seismic Event

August 17, 2007

The University of Utah Seismograph Stations recorded a magnitude-1.6 seismic event at the time of a Thursday, Aug. 16 "bump" that killed and injured rescuers at a Utah coal mine where six miners were trapped by an Aug. 6 ...

Recommended for you

Amazon deforestation leaps 16 percent in 2015

November 28, 2015

Illegal logging and clearing of Brazil's Amazon rainforest increased 16 percent in the last year, the government said, in a setback to the aim of stopping destruction of the world's greatest forest by 2030.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.