Discovery of the source of the most common meteorites

Jul 10, 2008
(Right) Comparison of the spectrum of asteroid (1270) Datura with the spectrum of the Fayetteville meteorite. (Left) Pictures of the Fayetteville meteorite (© Arkansas Center for Space and Planetary Sciences, University of Arkansas).

Astronomy & Astrophysics is publishing the first discovery by T. Mothé-Diniz (Brazil) and D. Nesvorný (USA) of asteroids with a spectrum similar to that of ordinary chondrites, the meteoritic material that most resembles the composition of our Sun. Most of the meteorites that we collect on Earth come from the main belt of asteroids located between Mars and Jupiter [1].

They were ejected from their asteroidal “parent body” after a collision, were injected into a new orbit, and they finally felt onto the Earth. Meteorites are a major tool for knowing the history of the solar system because their composition is a record of past geologic processes that occurred while they were still incorporated in the parent asteroid.

One fundamental difficulty is that we do not know exactly where the majority of meteorite specimens come from within the asteroidal main belt. For many years, astronomers failed to discover the parent body of the most common meteorites, the ordinary chondrites that represent 75% of all the collected meteorites.

To find the source asteroid of a meteorite, astronomers must compare the spectra of the meteorite specimen to those of asteroids. This is a difficult task because meteorites and their parent bodies underwent different processes after the meteorite was ejected. In particular, asteroidal surfaces are known to be altered by a process called “space weathering”, which is probably caused by micrometeorite and solar wind action that progressively transforms the spectra of asteroidal surfaces. Hence, the spectral properties of asteroids become different from those of their associated meteorites, making the identification of asteroidal parent body more difficult.

Collisions are the main process to affect asteroids. As a consequence of a strong impact, an asteroid can be broken up, its fragments following the same orbit as the primary asteroid. These fragments constitute what astronomers call “asteroid families”. Until recently, most of the known asteroid families have been very old (they were formed 100 million to billions of years ago). Indeed, younger families are more difficult to detect because asteroids are closer to each other [2]. In 2006, four new, extremely young asteroid families were identified, with an age ranging from 50000 to 600000 years. These fragments should be less affected than older families by space weathering after the initial breakup. Mothé-Diniz and Nesvorný then observed these asteroids, using the GEMINI telescopes (one located in Hawaii, the other in Chile), and obtained visible spectra. They compared the asteroids spectra to the one of an ordinary chondrite (the Fayetteville meteorite [3]) and found good agreement, as illustrated on Fig. 1.

This discovery is the first observational match between the most common meteorites and asteroids in the main belt. It also confirms the role of space weathering in altering asteroid surfaces. Identifying the asteroidal parent body of a meteorite is a unique tool when studying the history of our solar system because one can infer both the time of geological events (from the meteorite that can be analyzed through datation techniques) and their location in the solar system (from the location of the parent asteroid).

Notes:

[1] There are only a few exceptions, including the example of the famous meteorites coming from Mars.

[2] After the primary asteroid is disrupted, the fragments move away from each other. The older the collision, the greater the distance between fragments.

[3] Meteorites are named for the place they were collected. The Fayetteville meteorite fell near Fayetteville, Arkansas, on December 26, 1934.

Citation: Visible spectroscopy of extremely young asteroid families, by T. Mothé-Diniz and D. Nesvorný, Astronomy & Astrophysics Letters, 2008, volume 486-2, pp. L9-L12

Source: Astronomy & Astrophysics

Explore further: Short, sharp shocks let slip the stories of supernovae

Related Stories

Comet Wild 2: A window into the birth of the solar system?

May 14, 2015

Our solar system, and other planetary systems, started as a disk of microscopic dust, gas, and ice around the young Sun. The amazing diversity of objects in the solar system today - the planets, moons, asteroids, ...

Researchers determine the origin of Annama meteorite

Apr 08, 2015

An international team led by the Spanish National Research Council (CSIC) has determined the orbit of Annama, a new characterized meteorite from a fireball occurred on April 19th 2014 at the Kola Peninsula ...

Vesta—Ceres' little sister

Apr 21, 2015

Only around 60 million kilometres closer to the Sun than Ceres, another large rock is orbiting in the remote asteroid belt: Vesta. Although its diameter of approximately 530 kilometres makes it a bit too ...

Recommended for you

Hubble observes one-of-a-kind star nicknamed 'Nasty'

May 21, 2015

Astronomers using NASA's Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is ...

Galaxy's snacking habits revealed

May 20, 2015

A team of Australian and Spanish astronomers have caught a greedy galaxy gobbling on its neighbours and leaving crumbs of evidence about its dietary past.

Supernova ignition surprises scientists

May 20, 2015

Scientists have captured the early death throes of supernovae for the first time and found that the universe's benchmark explosions are much more varied than expected.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.