Study provides clues to preventing and treating cancer spread

Jul 28, 2008

Isn't it odd that cancer cells from one organ, such as the skin, can travel and take root in a totally different organ, like the lung?

What's more, why is it that certain cancers prefer to spread, or metastasize, to certain places? Prostate cancer usually moves to bone; colon cancer, to the liver.

To answer these questions, Dr. Hendrik van Deventer, assistant professor of medicine at the University of North Carolina at Chapel Hill and a member of the UNC Lineberger Comprehensive Cancer Center, turned to a century-old idea of cancer spread: English surgeon Stephen Paget's "seed and soil."

The idea is that the spread of cancer isn't just about the tumor itself (the seed), but also the environment where it grows (the soil). Other scientists have shown that cells from bone marrow can migrate and change the environment so that it is receptive to incoming cancer cells. These cells do so by forming small neighborhoods or niches within distant organs. Thus, biologists refer to these areas as "premetastic niches."

Van Deventer and his colleagues wanted to know what mysterious non-tumor cell could change a normal organ so cancer cells would invade. If scientists could discover the identity of that normal cell, maybe they could devise treatments to stop metastases.

In a study published in the July issue of The American Journal of Pathology, van Deventer showed for the first time that that cell could be a fibrocyte – cells that travel around the body, rushing to the site of an injury to aid in healing when needed. The study also suggests ways to develop treatments to prevent metastases using already available medications.

"This study shows it's possible for fibrocytes to form the premetastatic niche. But it stops short of proving they positively are the cells," van Deventer said.

The UNC researcher's work with fibrocytes began when he wanted to figure out why "knockout mice" that are missing the cell receptor CCR5 get fewer cancer metastases than normal mice. CCR5 helps control the migration of cells through the body. He injected these knockout mice with all types of cells from normal mice, to try to make the mice form more metastases of melanoma (skin cancer).

The only cells that did it were those that appeared to be fibrocytes.

When van Deventer injected the mice with just 60,000 of these cells, the rate of metastases nearly doubled. "That's a big effect for a relatively small number of cells," he said.

Though cancer researchers don't usually study fibrocytes, it makes sense to van Deventer that fibrocytes could form the premetastatic niche. In healthy humans, fibrocytes travel through the bloodstream to areas of injury. Once there, they produce changes that are good for wounds. Unfortunately, these same changes can help cancers grow. It is not yet clear if fibrocytes are causing these problems in cancer patients. However, "there is some clinical data that suggests that these cells are increased in patients with metastatic cancer," he said.

The experiment also showed that injection of these cells induced MMP9, an enzyme that is known to promote cancer. The researchers considered this good news, since drugs are available that block MMP enzymes and have proven beneficial in treating cancer.

Still, many basic questions remain to be answered. How do cancers promote the formation of the premetastatic niche? Do they change the behavior of these circulating cells or simply increase their number? Are some patients at higher risk for metastasis because their environment changes their fibrocytes? Is some of the benefit of our cancer treatments lost because of inadvertent changes to these cells?

"These are daunting questions, but ones that would have pleased Dr. Paget," van Deventer said. "This paper gives us a place to start looking for the answers."

Source: University of North Carolina

Explore further: Spicy treatment the answer to aggressive cancer?

Related Stories

Researchers discover new mechanism of DNA repair

13 hours ago

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Recommended for you

Spicy treatment the answer to aggressive cancer?

22 hours ago

It has been treasured by food lovers for thousands of years for its rich golden colour, peppery flavour and mustardy aroma…and now turmeric may also have a role in fighting cancer.

Cancer survivors who smoke perceive less risk from tobacco

Jul 02, 2015

Cancer survivors who smoke report fewer negative opinions about smoking, have more barriers to quitting, and are around other smokers more often than survivors who had quit before or after their diagnosis, according to a ...

Melanoma mutation rewires cell metabolism

Jul 02, 2015

A mutation found in most melanomas rewires cancer cells' metabolism, making them dependent on a ketogenesis enzyme, researchers at Winship Cancer Institute of Emory University have discovered.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Jul 30, 2008
Atoms with "open" outer orbits can absorb high-speed electrons that otherwise could break hydrogen bonds and accelerate mitosis!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.