New chlorine-tolerant, desalination membrane hopes to boost access to clean water

Jul 22, 2008

A chemical engineering professor at The University of Texas at Austin is part of a team that has developed a chlorine-tolerant membrane that should simplify the water desalination process, increasing access to fresh water and possibly reducing greenhouse gases.

"If we make the desalination process more efficient with better membranes, it will be less expensive to desalinate a gallon of water, which will expand the availability of clean water around the world," Professor Benny Freeman says.

The research will be published July 28 in the German Chemical Society's journal Angewandte Chemie.

Freeman worked primarily with James E. McGrath of Virginia Tech University and Ho Bum Park of the University of Ulsan in South Korea for more than three years to develop the chlorine-tolerant membrane made of sulfonated copolymers. A patent has been filed.

Chlorine must be added to water to disinfect it to prevent a biofilm (stemming from biological contaminants in the raw water) from forming on the membrane, which would reduce its performance. It is then de-chlorinated prior to sending it through the currently used polyamide membranes, which don't tolerate chlorinated water.

"It promises to eliminate de-chlorination steps that are required currently to protect membranes from attack by chlorine in water," Freeman says. "We believe that even a small increase in efficiency should result in large cost savings."

The development could also have a direct impact on reducing carbon-dioxide emissions, which contribute to global warming.

"Energy and water are inherently connected," Freeman says. "You need water to generate power (cooling water for electric power generation stations) and generation of pure water requires energy to separate the salt from the water. That energy is often generated from the burning of fossil fuels, which leads inevitably to the generation of carbon dioxide. Therefore, if one can make desalination more energy-efficient by developing better membranes, such as those that we are working on, one could reduce the carbon footprint required to produce pure water."

Freeman says McGrath and his research group developed novel materials based on an entirely different platform of membranes than those used today in desalination membranes. These new materials are extremely tolerant to aqueous chlorine so their performance doesn't deteriorate in the presence of chlorine.

"Basically, Dr. McGrath radically changed the chemical composition of the membranes, relative to what is used commercially, and the new membranes do not have chemical linkages in them that are sensitive to attack by chlorine," says Freeman, who holds the Kenneth A. Kobe Professorship in Chemical Engineering and the Paul D. & Betty Robertson Meek & American Petrofina Foundation Centennial Professorship in Chemical Engineering.

Source: University of Texas at Austin

Explore further: NRL licenses new polymer resin for commercial applications

Related Stories

Aspirin aids Middle East plant restoration project

Apr 13, 2015

Kings Park scientists have found a key ingredient in aspirin and anti-pimple products, salicylic acid, is a cost-effective plant growth and survival improver during a world-first desert restoration trial ...

Quantum Criticality in life's proteins (Update)

Apr 15, 2015

(Phys.org)—Stuart Kauffman, from the University of Calgary, and several of his colleagues have recently published a paper on the Arxiv server titled 'Quantum Criticality at the Origins of Life'. The id ...

Simple method of binding pollutants in water

Mar 26, 2015

New types of membrane adsorbers remove unwanted particles from water and also, at the same time, dissolved substances such as the hormonally active bis-phenol A or toxic lead. To do this, researchers at the ...

Recommended for you

Tiny silicone spheres come out of the mist

1 hour ago

Technology in common household humidifiers could enable the next wave of high-tech medical imaging and targeted medicine, thanks to a new method for making tiny silicone microspheres developed by chemists ...

Inkjet printing process for kesterite solar cells

4 hours ago

A research team at HZB has developed an inkjet printing technology to produce kesterite thin film absorbers (CZTSSe). Based on the inkjet-printed absorbers, solar cells with total area conversion efficiency ...

The next step in DNA computing: GPS mapping?

6 hours ago

Conventional silicon-based computing, which has advanced by leaps and bounds in recent decades, is pushing against its practical limits. DNA computing could help take the digital era to the next level. Scientists ...

Thermometer-like device could help diagnose heart attacks

6 hours ago

Diagnosing a heart attack can require multiple tests using expensive equipment. But not everyone has access to such techniques, especially in remote or low-income areas. Now scientists have developed a simple, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.