Yale researchers discover Legionnaire microbe's tricks

June 19, 2008

Yale University researchers have shed new light how bacteria like the ones that cause Legionnaires' disease and Q-fever raise such havoc in human patients.

In order to survive, the gram-negative bacteria use genes that have evolved in tandem with ones in their hosts to essentially disarm immune system cells trying to kill them, the scientists report Friday in the journal Science.

"Because of their life style, trying to identify how these organisms cause disease has been really difficult,'' said Craig Roy, professor at the Yale School of Medicine in the section of microbial pathogenesis.
Roy and his group described one innovative way the organisms inflict their damage with impunity.

Some gram-negative pathogens such as Legionella pneumophila, and Coxiella burnetii, the cause of Q fever, actually secrete proteins into eukaryotic cells, or cells with a nucleus. But exactly what those proteins did was not known.

Legionnaires' disease is a dangerous form of pneumonia often contracted by inhaling water droplets containing the organism. Q-fever in humans can cause high fevers, chills and can also develop into pneumonia. Both often go undiagnosed.

Previous genome scans of the gram-negative bacteria that cause these diseases had identified a high prevalence of genes called Anks, for ankyrin repeat homology domains. These genes fascinated scientists because they appear very similar to numerous genes in eukaryotic cells that regulate a multitude of processes. These bacteria have "borrowed'' or co-evolved genes from their hosts to survive in the cell. In fact, some species of these bacteria cannot exist outside of a eukaryotic cell.

Roy's lab showed that Ank proteins are secreted into immune system cells called macrophages, and once inside, turn off mechanisms within the cell designed to destroy the bacteria.

Roy believes that more such survival tricks of gram-negative pathogens will be found but adds, "this study at least gives us a foothold" for further study.

Because these bacteria tend to behave like viruses and actually invade cells, they might be susceptible to a vaccine that targets specific elements of the Ank protein and allow macrophages to complete the job, he said.

Source: Yale University

Explore further: Biologists report method to calculate lifetime energy requirements of cells, genes

Related Stories

Bacterial protein can help convert stem cells into neurons

November 19, 2015

As the recipe book for turning stem cells into other types of cells keeps growing larger, the search for the perfect, therapeutically relevant blend of differentiation factors is revealing some interesting biology. A study ...

Sequencing algae's genome may aid biofuel production

November 19, 2015

There's an ancient group of algae that evolved in the world's oceans before our backboned ancestors crawled onto land. They are so numerous that their gigantic blooms can affect the weather, and they account for 30 to 40 ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.