Synergy between biology and physics drives cell-imaging technology

June 2, 2008

Developing techniques to image the complex biological systems found at the sub-cellular level has traditionally been hampered by divisions between the academic fields of biology and physics. However, a new interdisciplinary zeal has seen a number of exciting advances in super-resolution imaging technologies.

In the June issue of Physics World, Paul O’Shea, a biophysicist at the University of Nottingham, Michael Somekh, an optical engineer at Nottingham’s Institute of Biophysics, Imaging & Optical Science, and William Barnes, professor of photonics at the University of Exeter, outline these new techniques and explore why their development is an endeavour that requires the best efforts of both biologists and physicists.

The traditional division between the disciplines has found common ground in the effort to image cellular functions. While some living cells are larger than 80 micrometres across, important and interesting cellular processes - such as signalling between cells - can take place at length scales of less than one micrometre.

This poses serious challenges for traditional imaging techniques such as fluorescence microscopy, whereby optical microscopes are used to observe biological structures that have been tagged with fluorescent molecules that emit photons when irradiated with light of a specific wavelength, as these offer a resolution of at best 200 nanometres. Increasingly, biologists have turned to physicists for help in breaking through this “diffraction” limit.

The result has been the development in recent years of several novel techniques to extend the reach of fluorescence microscopy. These include methods such as stimulated emission depletion microscopy (STED), stochastic reconstruction microscopy (STORM), photo-activated localization microscopy (PALM) and structured illumination microscopy, all of which are capable of resolving structures as small as 50 nanometres across. These techniques build on theoretical and experimental tools common to physics that allow the physical diffraction limits of light to be broken.

As the authors of the article explain, “What is fascinating is that the experimental needs of biology are driving developments in imaging technology, while advances in imaging technology are in turn inspiring new biological questions. Many of these developments are also going hand in hand with a revolution that is taking place in biological thinking, which intimately involves physicists.”

Source: Institute of Physics

Explore further: Using DNA-based nanotechnology to visualize nanoscale biological structures

Related Stories

Autophagy under the microscope as never before

August 11, 2016

We don't tend to wrap our recycling waste in bubble wrap but that's essentially what cells do during the cellular recycling process called autophagy. Using the live imaging capabilities at the Babraham Institute, Institute ...

Discovery could help treatments for sickle cell disease

August 8, 2016

An interdisciplinary, international group of researchers has found new biophysical markers that could help improve the understanding of treatments for sickle cell disease, a step toward developing better methods for treating ...

Spider silk: Mother Nature's bio-superlens

August 19, 2016

Scientists at the UK's Bangor and Oxford universities have achieved a world first: using spider-silk as a superlens to increase the microscope's potential.

Watch a tiny space rocket work

August 8, 2016

Moving a nanosatellite around in space takes only a tiny amount of thrust. Engineers from Michigan Technological University and the University of Maryland teamed up, put a nanoscale rocket under a microscope, and watched ...

New method to identify microscopic failure (Update)

August 17, 2016

If you've never had the plumber to your house, you've been lucky. Pipes can burst due to a catastrophic event, like subzero temperatures, or time and use can take a toll, wearing away at the materials with small dings and ...

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Jun 02, 2008
Brace yourself Biologists! You'll find: (1)The cell does NOT digest food! (2)All that goes on in a cell is "Energy Transfer" in the form of electrons! Function and Malfunction is electronic! COOLING is the cure for cancer!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.