Sweet nothings: Artificial vesicles and bacterial cells communicate by way of sugar components

June 5, 2008

For an organism to develop and function, the individual cells must exchange information, or communicate, with each other. Is it possible to learn their language and “talk to” the cells?

Yes it is: Cameron Alexander and George Pasparakis at the University of Nottingham (UK) have been able to facilitate a conversation between bacterial cells and artificial polymer vesicles. In the journal Angewandte Chemie they report that this first communication occurred by way of sugar groups on the vesicle surface. The vesicles subsequently transfer information to the cells—in the form of dye molecules.

Complex structures made of many sugar components on the surfaces of cells are the “language” used for processes such as cell recognition, for example, in the differentiation of tissues or the identification of endogenous cells and foreign invaders. Scientists would like to be able to use this glycocode to “address” target cells and to intervene directly in cellular processes to treat diseases or to guide regeneration of damaged tissues.

The British scientists took an interesting route to learn more about the “language” of cells: they constructed vesicles, tiny capsules whose outer shell is made of special polymer building blocks. Their special trick: the polymer chains are equipped with side chains bearing glucose units that wind up being exposed on the vesicle surface.

The researchers brought the vesicles together with bacteria that have glucose-binding proteins on their surface. The behavior of the bacteria varies depending on the polymer’s composition and the size of the vesicles. Among the bacteria were some individuals that enter into very strong bonds with large vesicles. These associated bacteria are then in a position to receive molecular “information” from the vesicles: dye molecules that were previously placed in the vesicles transferred specifically into the interior of these bacteria.

“Our vesicles can be viewed as simple replicas of living cells,” says Alexander, “that can communicate with real cells by way of the glycocode as well as through signal molecules inside the vesicles.” Possible applications include drug transporters that deliver their cargo to specific target cells, or antibiotic transporters that deliver their toxic load exclusively to infectious agents.

Citation: Cameron Alexander, Sweet Talking Double Hydrophilic Block Copolymer Vesicles, Angewandte Chemie International Edition 2008, 47, No. 26, 4847–4850, doi: 10.1002/anie.200801098

Source: Angewandte Chemie

Explore further: Entangled in the endothelium

Related Stories

Entangled in the endothelium

October 7, 2016

LMU researchers have uncovered the underlying cause of a rare type of immunodeficiency syndrome, which severely impairs their ability to fight infections.

Bacterial membrane vesicles can cause preterm birth

September 1, 2016

Approximately 20-30% of women carry bacteria called group B streptococcus (GBS) in their vagina or rectum. In most cases, these bacteria cause no problems, but GBS has been linked to complications during pregnancy, including ...

Research shows how cells handle big trash pickup

August 1, 2016

Everyone would rather cook than take out the garbage. Perhaps that's why biochemists learned how cells make proteins 70 years ago, but are just now learning how they get rid of proteins that are no longer needed or no longer ...

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Scientists discover missing link in septic shock

September 14, 2016

Researchers at VIB and Ghent University have discovered an important mechanism of sepsis, an overreaction of the body's immune system to an infection. In this condition, the brain is unable to curb an inflammatory response, ...

Recommended for you

Bubble nucleus discovered

October 27, 2016

Research conducted at the National Superconducting Cyclotron Laboratory at Michigan State University has shed new light on the structure of the nucleus, that tiny congregation of protons and neutrons found at the core of ...

Shocks in the early universe could be detectable today

October 27, 2016

(Phys.org)—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.