Water inside single-walled carbon nanotubes

June 25, 2008
Carbon Nanotubes

Researchers have identified a signature for water inside single-walled carbon nanotubes, helping them understand how water is structured and how it moves within these tiny channels.

This is the first time researchers were able to get a snapshot of the water inside the carbon nanotubes.

Single-walled carbon nanotubes (SWCNTs) offer the potential to act as a unique nanofiltration system. While experiments have demonstrated extremely fast flow in these channels, it is still unclear why, and few studies have experimentally probed the detailed structure and movement of the water within nanotubes.

That's where Lawrence Livermore scientists Jason Holt, Julie Herberg, and University of North Carolina's, Yue Wu and colleagues come in.

As described in an article appearing in the July edition of Nanoletters, they used a technique called Nuclear Magnetic Resonance (NMR) to get a glimpse of the water confined inside one-nanometer diameter SWCNTs.

The nanotubes, special molecules made of carbon atoms in a unique arrangement, are hollow and more than 50,000 times thinner than a human hair. The confined water exhibited very different properties from that of bulk water, and this allowed it to be distinguished in the NMR spectrum.

Carbon nanotubes have long been touted for their superior thermal, mechanical and electrical properties, but recent work suggests they can be used as nanoscale filters.

Earlier Livermore studies have suggested that carbon nanotubes may be used for desalination and demineralization because of their small pore size and enhanced flow properties. Conventional desalination membranes are typically much less permeable and require large pressures, entailing high energy costs. However, these more permeable nanotube membranes could reduce the energy costs of desalination significantly.

While the technology offers great promise, there still are important unanswered scientific questions.

"There have been many predictions about how water behaves within carbon nanotubes," said Holt, the principal investigator of the project, which is funded through LLNL's Laboratory Directed Research and Development (LDRD). "With experiments like these, we can directly probe that water and determine how close those predictions were."


Source: DOE/Lawrence Livermore National Laboratory

Explore further: Study reveals how nanochannels select potassium ions

Related Stories

Study reveals how nanochannels select potassium ions

August 25, 2015

(Phys.org)—One of the mysteries in biology is how cells can selectively diffuse potassium across a membrane. Biological systems rely on a delicate balance between these potassium and sodium ion concentrations in the surrounding ...

Purifying contaminated water with crab shells

August 25, 2015

Copper and cadmium exist naturally in the environment, but human activities including industrial and agricultural processes can increase their concentrations. At high concentrations, copper can cause unwanted health effects ...

NJIT professor earns patent for next-generation water filter

June 8, 2015

Somenath Mitra, distinguished professor of chemistry and environmental science, was awarded a patent last month for a next-generation water desalination and purification technology that uses uniquely absorbent carbon nanotubes ...

Project uses crowd computing to improve water filtration

July 6, 2015

Nearly 800 million people worldwide don't have access to safe drinking water, and some 2.5 billion people live in precariously unsanitary conditions, according to the Centers for Disease Control and Prevention. Together, ...

A stretchy mesh heater for sore muscles

July 3, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle Research, ...

Recommended for you

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Biological tools create nerve-like polymer network

August 24, 2015

Using a succession of biological mechanisms, Sandia National Laboratories researchers have created linkages of polymer nanotubes that resemble the structure of a nerve, with many out-thrust filaments poised to gather or send ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

zevkirsh
not rated yet Jun 25, 2008
how about using them as microtubules in micro machines to transport water as a coolant?
yybb
not rated yet Jul 16, 2008
very good

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.