Simulations predicted Mars lander would hit sub-surface

June 2, 2008
Simulations predicted Mars lander would hit sub-surface
University of Michigan simulations performed with crushed walnut shells at NASA's Ames Research Center show that Mars Phoenix thrusters would strip loose soil to the hard surface.

University of Michigan simulations correctly predicted that the pulsed jets of the Mars Phoenix lander would strip the soil to the subsurface ice or rock as the craft touched down.

Photos of the area beneath the craft on Friday revealed a hard surface that scientists say may be ice. It could also be rock, and researchers won’t know until the Phoenix can dig into the dirt. But it’s clear the craft cleared away soil as it landed.

“This is exactly what was predicted by our group,” said Nilton Renno, an associate professor in the Department of Atmospheric, Oceanic and Space Sciences. “We’ve seen the most amazing photos of the hard surface under the thrusters. The brightness and smoothness suggests it is ice.”

This would mark the first time a spacecraft has touched ice on another planet, Renno said.

Renno and Manish Mehta, a doctoral student in the same department, performed a series of tests for NASA over the past year in part to determine how the lander would affect the place it touches down. Phoenix’s pulsed jet steering and braking system is unique.

Mehta performed the most recent simulations in April at NASA Ames Research Center using properly-sized crushed walnut shells and other fine dust particles to simulate the Martian soil. Mehta showed that the pulsed jets could cause a different, more explosive erosion than the continuous jets of the Viking spacecraft, which landed on Mars in 1976. The Phoenix landing process involved thrusters firing in bursts to slow the craft and guide it.

“In our simulations, the pulsed jets excavated to the hard, icy surface within less than a second. The pulses fluidized the bed under the thrusters, so that the soil behaves like water, ” Mehta said.

These results were presented at the Phoenix Science Team Meeting at Tucson, Ariz. on May 19 and a site-alteration report was submitted to JPL and Lockheed Martin.

Mehta suggested to the Phoenix science team that they check under its deck on Mars to find exposed ice.

Phoenix landed on Mars on May 25 and will spend the next three months analyzing soil and ice to uncover the history of water on the planet. Its mission is to determine whether the arctic plains there could support microbial life.

Source: University of Michigan

Explore further: Future issues perchlorate poses for colonizing Mars

Related Stories

Viking landers did detect organics on Mars

January 6, 2011

(PhysOrg.com) -- In 1976 the NASA Viking landers took samples of soil on Mars and tested them for signs of organic carbon. A reinterpretation of the results now suggests the samples did contain organic compounds, but the ...

Missing piece inspires new look at Mars puzzle

September 3, 2010

(PhysOrg.com) -- Experiments prompted by a 2008 surprise from NASA's Phoenix Mars Lander suggest that soil examined by NASA's Viking Mars landers in 1976 may have contained carbon-based chemical building blocks of life.

Soil Studies Continue at Site of Phoenix Mars Lander

August 11, 2008

(PhysOrg.com) -- NASA's Phoenix Mars Lander has continued studies of its landing site by widening a trench, making overnight measurements of conductivity in the Martian soil and depositing a sample of surface soil into a ...

Recommended for you

Galaxies show appetite for growth

August 4, 2015

The extent to which galaxies consume one another has been revealed in research. Findings from the study help to explain how galaxies such as the Milky Way were formed.

Will SETI's unprecedented new program finally find E.T.?

August 4, 2015

Stephen Hawking, Frank Drake and dozens of journalists gathered at the Royal Society in London last week to hear astronomers announce a ground-breaking new project to search for intelligent extraterrestrial life called "Breakthrough ...

Tracking a mysterious group of asteroid outcasts

August 4, 2015

High above the plane of our solar system, near the asteroid-rich abyss between Mars and Jupiter, scientists have found a unique family of space rocks. These interplanetary oddballs are the Euphrosyne (pronounced you-FROH-seh-nee) ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.