Scientists find how neural activity spurs blood flow in the brain

Jun 26, 2008

New research from Harvard University neuroscientists has pinpointed exactly how neural activity boosts blood flow to the brain. The finding has important implications for our understanding of common brain imaging techniques such as fMRI, which uses blood flow in the brain as a proxy for neural activity.

The research is described in the June 26 issue of the journal Neuron.

"When you see a brain image from fMRI studies, you are actually looking at changes in blood flow and oxygenation," says Venkatesh N. Murthy, professor of molecular and cellular biology in Harvard's Faculty of Arts and Sciences. "But because of the tight coupling between neural activity and blood flow, we are able to use the blood flow changes as a surrogate for brain activity. A better understanding of exactly how brain activity boosts blood flow should help us better read this process in reverse, which is what we do when interpreting fMRI images."

While it represents only about 5 percent of the human body's mass, the brain consumes 20 percent of the oxygen carried in its blood. Unlike muscle and other types of tissue, the brain has no internal energy stores, so all its metabolic needs must be met through the continuous flow of blood.

Murthy and colleagues studied mice and found that neurovascular coupling occurs through intermediary cells called astrocytes. By manipulating calcium levels, astrocytes can dilate or constrict blood vessels, depending on whether or not the cells are bound by neurotransmitters.

When a region of the brain becomes active, neurotransmitters begin to trickle out of that area's neural circuitry. The most common of these neurotransmitters in the mammalian brain, glutamate, is widely released at synapses and binds to astrocytes as well as to postsynaptic receptors. Murthy's group found that after binding glutamate, astrocytes elevate their intracellular calcium levels, dilating blood vessels and increasing blood flow to that region of the nervous system.

Murthy and colleagues studied this process in the olfactory bulb, which processes odors.

"When a mouse encounters a scent, discrete loci in its olfactory bulb are activated, which in turn increases blood flow in those spots," Murthy says. "We measured all this using sophisticated optical microscopy, actually counting the number and rate of red blood cells passing through capillaries in the area. In addition to showing directly that astrocytes are involved in neurovascular coupling, we discovered that there are multiple molecular signaling pathways involved."

The new research by Murthy and colleagues lays the groundwork for further study of how this exquisite neurovascular coupling may go awry in neurodegenerative diseases, such as Alzheimer's disease, as well as in the normally aging brain. A growing body of evidence suggests that as people age -- and especially with the onset of neurodegenerative disease -- neurovascular coupling can be impaired. It's still unknown whether this impairment can add to the cognitive defects associated with both healthy and diseased aging.

Source: Harvard University

Explore further: AMA: avoiding distress in medical school

Related Stories

ONR: Helping to train the future canine force

Apr 28, 2015

Canines have proven to be expert bomb detectors for U.S. troops in Iraq and Afghanistan. But with combat operations winding down, the Office of Naval Research's (ONR) Expeditionary Canine Sciences program ...

In pursuit of the perfectly animated cloud of smoke

Mar 12, 2015

Simulations of impressive landscapes and alien creatures have become commonplace, especially in fantasy and science fiction films. But simulations are also appearing in ever more medical and engineering applications. ...

Sweet nanoparticles target stroke

Mar 12, 2015

Materials resulting from chemical bonding of glucosamine, a type of sugar, with fullerenes, kind of nanoparticles known as buckyballs, might help to reduce cell damage and inflammation occurring after stroke. ...

Recommended for you

AMA: avoiding distress in medical school

May 22, 2015

(HealthDay)—Understanding the key drivers underlying medical students' distress can help address the issues and enhance student well-being, according to an article published by the American Medical Association.

European court to rule on right-to-die case

May 21, 2015

Europe's human rights court will on June 5 rule on whether a man in a vegetative state can be taken off life support, a case that has ignited a fierce euthanasia debate in France, a spokesman said Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.