Radio telescopes reveal unseen galactic cannibalism

June 23, 2008

Mystery of black hole 'feeding' resolved
Radio-telescope images have revealed previously-unseen galactic cannibalism -- a triggering event that leads to feeding frenzies by gigantic black holes at the cores of galaxies. Astronomers have long suspected that the extra-bright cores of spiral galaxies called Seyfert galaxies are powered by supermassive black holes consuming material. However, they could not see how the material is started on its journey toward the black hole.

One leading theory said that Seyfert galaxies have been disturbed by close encounters with
neighboring galaxies, thus stirring up their gas and bringing more of it within the gravitational
reach of the black hole. However, when astronomers looked at Seyferts with visible-light telescopes, only a small fraction showed any evidence of such an encounter. Now, new images of hydrogen gas in Seyferts made using the National Science Foundation's Very Large Array (VLA) radio telescope show the majority of them are, in fact, disturbed by ongoing encounters with neighbor galaxies.

"The VLA lifted the veil on what's really happening with these galaxies," said Cheng-Yu Kuo, a graduate student at the University of Virginia. "Looking at the gas in these galaxies clearly showed that they are snacking on their neighbors. This is a dramatic contrast with their
appearance in visible starlight," he added.

The effect of the galactic encounters is to send gas and dust toward the black hole and produce
energy as the material ultimately is consumed. Black holes, concentrations of matter so dense that not even light can escape their gravitational pull, reside at the cores of many galaxies. Depending on how rapidly the black hole is eating, the galaxy can show a wide range of energetic activity. Seyfert galaxies have the mildest version of this activity, while quasars and blazars are hundreds of times more powerful.

The astronomers picked a number of relatively nearby Seyfert galaxies that had previously been observed with visible-light telescopes. They then carefully studied the Seyferts with the VLA, specifically looking for radio waves emitted by hydrogen atoms. The VLA images showed the vast majority of the Seyferts were disturbed by encounters with neighbor galaxies.

By comparison, similar VLA images of inactive galaxies showed that very few were disturbed. "This comparison clearly shows a connection between close galactic encounters and the black-hole-powered activity in the cores," said Ya-Wen Tang, who began this work at the Institute of Astronomy & Astrophysics, Academia Sinica (ASIAA), in Taiwan and now is a graduate student at the National Taiwan University.

"This is the best evidence yet for the fueling of Seyfert galaxies. Other mechanisms have been
proposed, but they have shown little if any difference between Seyferts and inactive galaxies," Tang added.

"Our results show that images of the hydrogen gas are a powerful tool for revealing
otherwise-invisible gravitational interactions among galaxies," said Jeremy Lim, also of ASIAA. "This is a welcome advance in our understanding of these objects, made possible by the best and most extensive survey ever made of hydrogen in Seyferts," Lim said.

Source: National Radio Astronomy Observatory

Explore further: What are active galactic nuclei?

Related Stories

What are active galactic nuclei?

November 9, 2016

In the 1970s, astronomers became aware of a compact radio source at the center of the Milky Way Galaxy – which they named Sagittarius A. After many decades of observation and mounting evidence, it was theorized that the ...

Prototypical active galaxy Arakelian 120 observed by Swift

October 18, 2016

(Phys.org)—Astronomers using NASA's Swift space observatory, have conducted a long-term monitoring campaign of a prototypical active galaxy, designated Arakelian 120 (Ark 120 for short). These observations reveal crucial ...

Starving black hole returns brilliant galaxy to the shadows

September 15, 2016

The mystery of a rare change in the behaviour of a supermassive black hole at the centre of a distant galaxy has been solved by an international team of astronomers using ESO's Very Large Telescope along with the NASA/ESA ...

Accreting black holes in galaxies

June 28, 2012

(Phys.org) -- Seyfert galaxies are like normal galaxies, our own Milky Way included, except in one critical respect: their nuclei are fantastically bright. In some instances they are as luminous as 100 billion Suns, though ...

Fermi telescope finds gamma-ray galaxy surprises

July 14, 2009

Back in June 1991, just before the launch of NASA's Compton Gamma-Ray Observatory, astronomers knew of gamma rays from exactly one galaxy beyond our own. To their surprise and delight, the satellite captured similar emissions ...

High-speed jets from a possible new class of galaxy

January 19, 2015

Seyfert galaxies are similar to spiral galaxies except that they have extraordinarily prominent, bright nuclei, sometimes as luminous as 100 billion Suns. Their huge energies are thought to be generated as matter falls towards ...

Recommended for you

Hubble catches a transformation in the Virgo constellation

December 9, 2016

The constellation of Virgo (The Virgin) is especially rich in galaxies, due in part to the presence of a massive and gravitationally-bound collection of over 1300 galaxies called the Virgo Cluster. One particular member of ...

Scientists sweep stodgy stature from Saturn's C ring

December 9, 2016

As a cosmic dust magnet, Saturn's C ring gives away its youth. Once thought formed in an older, primordial era, the ring may be but a mere babe – less than 100 million years old, according to Cornell-led astronomers in ...

Khatyrka meteorite found to have third quasicrystal

December 9, 2016

(Phys.org)—A small team of researchers from the U.S. and Italy has found evidence of a naturally formed quasicrystal in a sample obtained from the Khatyrka meteorite. In their paper published in the journal Scientific Reports, ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

zevkirsh
1 / 5 (2) Jun 23, 2008
giant blackholes exist in the intergalactic space between major galaxies, they cannot be seen , nor detected.
brant
not rated yet Jun 23, 2008
blackholes dont exist.
They are "white" holes. Notice how stuff goes out>>>

The neighboring "snack" is in reality a Birkeland current connecting the 2 galaxies...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.