Quake Research to Provide Rare Glimpse of How Structures Collapse

Jun 04, 2008

Structural engineers at the University at Buffalo are conducting some of the most comprehensive experiments ever attempted to develop methods of evaluating and designing steel buildings so that they will be less vulnerable to collapse during strong earthquakes.

The experiments are part of a project aimed at both designing new structures that can withstand large deformations without collapsing and at evaluating existing buildings to determine where retrofits may be necessary.

The gap in information about how structures collapse became painfully clear last month after the 7.9 earthquake in Sichuan, China, when the tragic collapse of numerous schools throughout the province caused the deaths of thousands of schoolchildren, the UB researchers noted.

"The whole idea of this project is to find out how much damage a particular building can take before it collapses," said Gilberto Mosqueda, Ph.D., assistant professor in the UB Department of Civil, Structural and Environmental Engineering and principal investigator on the research.

He explained that the philosophy behind building codes is that while buildings may sustain damage in a strong earthquake, they should do so in such a way that the damage can be absorbed by the structure without collapsing so that people can safely evacuate.

"But many different factors besides design come into play, such as the quality of construction, the known seismicity of an area and the magnitude of an event," he continued.

"The problem from the structural side is that there is very little experimental data available to verify our models or assumptions on the nature of how structures collapse because these experiments are very difficult to do in a laboratory," he said.

Mosqueda said that the shake table facility in Miki City, Japan -- the world's largest -- is the only one in the world capable of subjecting full-scale structures to simulated ground motions that can trigger a collapse. Those experiments tend to be expensive in terms of cost, time and labor.

For that reason, Mosqueda has geared his research toward developing more realistic, reliable and economical ways of testing large-scale structures. To do this, his project will combine laboratory experiments of partial structures that can capture the initiation of a collapse either in slow-motion or in real-time with numerical simulations of the remaining full-scale building. This hybrid numerical and experimental model will then be subjected to earthquake loading.

In order to simulate the earthquake loads, the experimental portion of the research will employ high-performance hydraulic actuators that will push and pull elements of the partial structure plus or minus 20 inches at forces of up to 220,000 pounds. Experiments will be performed in UB's Structural Engineering and Earthquake Simulation Laboratory (SEESL) in the School of Engineering and Applied Sciences.

"Through these experiments, we will be able to capture the interaction between a building's elements, such as columns, beams and floor slabs during strong ground motions," Mosqueda said.

Some of those experiments will be conducted over the Internet, with pieces of the same structure simultaneously being tested at UB and Kyoto University, Japan, while numerical simulations will produce data on how the entire structure would perform under the same conditions. These "distributed hybrid tests," as they are called, are made possible by international collaborators and the National Science Foundation's George E. Brown Jr. Network for Earthquake Engineering Simulation (NEES) Facility, a nationwide earthquake-engineering "collaboratory" of which UB is a key node.

Mosqueda's project is the result of a prestigious $400,000 Faculty Early Career Development Award he received from the NSF to develop a "Hybrid Simulation Platform for Seismic Performance Evaluation of Structures Through Collapse." According to the NSF, the CAREER program recognizes and supports the early career-development activities of teacher-scholars "who are most likely to become the academic leaders of the 21st century."

Source: University at Buffalo

Explore further: New computational technique advances color 3-D printing process

Related Stories

What works and doesn't in disaster health response

May 01, 2015

On Saturday, April 24 2015, a major (Magnitude 7.8) earthquake hit Nepal shortly after midday. Long-expected by seismologists, this large earthquake has left many of the older structures in this mountainous and economica ...

Wood-derived foam materials

Apr 29, 2015

Since most foam materials are made of petrochemical plastics, they aren't very climate-friendly. But now an alternative is in sight – a novel foam material produced entirely from wood, which is not harmful ...

Humble neutron is valuable tool in geology

Mar 16, 2015

With the ability to analyse the properties of the Earth's internal components to the atomic scale in conditions only found kilometres below our feet, recent studies have allowed geoscientists to study our ...

Recommended for you

Defusing bombs by color

4 hours ago

This March, Cambodia held its first national-level science festival at the Royal University of Phnom Penh, attracting over 10,000 young students to the science booths over the course of three days. At one ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.