Systems properties of insulin signaling revealed

Jun 20, 2008

A team of Swedish researchers has characterized novel systems properties of insulin signaling in human fat cells. Their mathematical modeling, described in an article published June 20th in the open-access journal PLoS Computational Biology, provides further insight into energy level maintenance (via the hormone insulin) within our bodies.

Hampered insulin function is the cardinal cause of Type 2 diabetes, which currently affects nearly 250 million people worldwide. The disease causes a metabolic malfunction due to incorrect information transfer of insulin concentration in the blood to the internal fluid of cells (the cytosol). This information transfer occurs through a complicated network of protein-protein interactions. The skeleton of the network has been characterized, but systems details, including the relative importance and time-scales of the interactions, were previously unknown.

Due to the complexity of the network, it has proved difficult to achieve such a systems understanding through mere experimental techniques and reasoning. Therefore, the team experimentally collected time-series data from human fat cells in vitro and evaluated various mechanistic explanations by translating the explanations into corresponding mathematical models.

In this study, the modeling indicated that either receptor recycling between the membrane and the cytosol, or feedback from proteins activated further down in the network, are involved in the information transfer during the first minutes after insulin stimulation.

As more detailed data become available, the authors predict that mathematical modeling will become an increasingly important tool for data analysis, and for furthering understanding of insulin signaling and cellular control.

Source: Public Library of Science www.ploscompbiol.org/doi/pcbi.1000096

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

Heartbeat on a chip could improve pharmaceutical tests

Jun 17, 2015

A gravity-powered chip that can mimic a human heartbeat outside the body could advance pharmaceutical testing and open new possibilities in cell culture because it can mimic fundamental physical rhythms, ...

Japan scientists make see-through mice

Nov 06, 2014

Researchers at the RIKEN Quantitative Biology Center in Japan, together with collaborators from the University of Tokyo, have developed a method that combines tissue decolorization and light-sheet fluorescent ...

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

The math of shark skin

Jul 03, 2015

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Cuban, US scientists bond over big sharks

Jul 03, 2015

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.