Physicists determine density limit for randomly packed spherical materials

June 2, 2008

The problem of how many identical-sized spheres can be randomly packed into a container has challenged mathematicians for centuries. A team of physicists at The City College of New York (CCNY) has come up with a solution that could have implications for everything from processing granular materials to shipping fruit.

Writing in the May 29 edition of Nature, they demonstrate that random packing of hard, i.e. non-crushable, spheres in three dimensions cannot exceed a density limit of 63.4 percent of the volume. This upper limit is a consequence of a completely "jammed" state that occurs when the materials are at their lowest energy levels, i.e. as close to inert as possible.

"Theoretically, the jammed state would be achieved by lowering the temperature of the spheres to approach absolute zero, since this would cause them to contract," explained Dr. Hernán Makse, CCNY Associate Professor of Physics and principal investigator. "In real life, however, it is attained by shaking the materials."

The findings have potential applications for the manufacture of pharmaceuticals and cosmetics, where powders have to be mixed to a homogenous consistency, he said. Currently, manufacturers must rely on empirical data, i.e. trial and error, to establish their formulas. Professor Makse said his goal is to develop a theory of powders that could enable manufacturers to more efficiently develop new products.

Source: City College of New York

Explore further: New general-purpose optimization algorithm promises order-of-magnitude speedups on some problems

Related Stories

Physicists are first to 'squeeze' light to quantum limit

January 2, 2009

( -- A team of University of Toronto physicists have demonstrated a new technique to squeeze light to the fundamental quantum limit, a finding that has potential applications for high-precision measurement, next-generation ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.


Adjust slider to filter visible comments by rank

Display comments: newest first

4 / 5 (2) Jun 02, 2008
The density limit of spheres is 64.95 percent.

Do your math!
4 / 5 (2) Jun 02, 2008
The density limit of spheres is 64.95 percent.

Do your math!

Actually for FCC packing (the highest close-packing possible), the density limit is 74.048%

Do your math!

Anyway the article is about random packing, not perfect close-packing, completely different issue which has to involve complex statistics.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.