Laser surgery probe targets individual cancer cells

June 24, 2008

Mechanical engineering Assistant Professor Adela Ben-Yakar at The University of Texas at Austin has developed a laser "microscalpel" that destroys a single cell while leaving nearby cells intact, which could improve the precision of surgeries for cancer, epilepsy and other diseases.

"You can remove a cell with high precision in 3-D without damaging the cells above and below it," Ben-Yakar says. "And you can see, with the same precision, what you are doing to guide your microsurgery."

Femtosecond lasers produce extremely brief, high-energy light pulses that sear a targeted cell so quickly and accurately the lasers' heat has no time to escape and damage nearby healthy cells. As a result, the medical community envisions the lasers' use for more accurate destruction of many types of unhealthy material. These include small tumors of the vocal cords, cancer cells left behind after the removal of solid tumors, individual cancer cells scattered throughout brain or other tissue and plaque in arteries.

A commercially available femtosecond laser system and microscope was developed recently for LASIK and other eye surgeries, but the system's bulk limits its usefulness. Ben-Yakar's laboratory has overcome technological challenges to create a microscope system that can deliver femtosecond laser pulses up to 250 microns deep inside tissue. The system includes a tiny, flexible probe that focuses light pulses to a spot size smaller than human cells.

Ben-Yakar's experimental system and its use to destroy a single cell within layers of breast cancer cells grown in the laboratory is described in the June 23 issue of Optics Express.

Within a few years, Ben-Yakar expects to shrink the probe's 15-millimeter diameter three-fold, so it would match endoscopes used today for laparoscopic surgery. The probe tip she has developed also could be made disposable -- for use operating on people who have infectious diseases or destroying deadly viruses and other biomaterials.

To develop the miniature laser-surgery system, Ben-Yakar worked with co-author Olav Solgaard at Stanford University's Electrical Engineering Department to incorporate a miniaturized scanning mirror. Ben-Yakar and her graduate student Chris Hoy, another co-author, also used a novel fiber optic cable that can withstand intense light pulses traveling from an infrared, femtosecond laser. To make the intensity more manageable, they stretched the light pulses into longer, weaker pulses for traveling through the fiber. Then they used the fiber's unique properties to reconstruct the light into more intense, short light pulses before entering the tissue.

For the study, Ben-Yakar directed laser light at breast cancer cells in three-dimensional biostructures that mimic the optical properties of breast tissue. She has since studied laboratory-grown, layered cell structures that mimic skin tissue and other tissues.

Ben-Yakar is also investigating the use of nanoparticles to focus the light energy on targeted cells. In research published last year, she demonstrated that gold nanoparticles can function as nano-scale magnifying lenses, increasing the laser light reaching cells by at least an order of magnitude, or 10-fold.

"If we can consistently deliver nanoparticles to cancer cells or other tissue that we want to target, we would be able to remove hundreds of unwanted cells at once using a single femtosecond laser pulse," Ben-Yakar says. "But we would still be keeping the healthy cells alive while photo-damaging just the cells we want, basically creating nanoscale holes in a tissue."

Source: University of Texas at Austin

Explore further: Research team refrigerates liquids with a laser for the first time

Related Stories

Mitochondria on guard of human life

November 18, 2015

A group of researchers from Lomonosov Moscow State University in collaboration with Russian Science Foundation has developed a unique method for the selective study of electron transport chain in living mitochondria by using ...

Mirage maker

October 30, 2015

Aditya Sadhanala wanders over to the wall, turns a pulley, and a wooden box about a metre squared swings up and away. Below it gleams an array of carefully positioned lasers, deflectors and sensors surrounding a piece of ...

Nanoquakes probe new 2-D material

October 26, 2015

In a step towards a post-graphene era of new materials for electronic applications, an international team of researchers, including scientists at the University of California, Riverside, has found a new and exciting way to ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 24, 2008

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.