New, flexible computers use displays with any shape

June 2, 2008
Paper Computer
A prototype paper computer developed in Queen's Human Media Laboratory uses leaf turns to navigate documents. Credit: Queen's University Human Media Laboratory

The shape of things to come in the computer world will be anything but flat, predicts Queen's University Computing professor Roel Vertegaal, who is now developing prototypes of these new "non-planar" devices in his Human Media Laboratory.

Not only will they take on flexible forms we've never imagined – like pop cans with browsers displaying RSS feeds and movie trailers – computers of the future will respond to our direct touch and even change their own shape to better accommodate data, for example, folding up like a piece of paper to be tucked into our pockets.

Dynacan
Interactive disposable computer on a Coke can, developed in Queen's University's Human Media Laboratory. Credit: Queen's University Human Media Labo

"Organic User Interface" – the concept behind these next-generation computers – is featured in the June issue of the Association of Computer Machinery's (ACM) flagship publication, Communications of ACM. The special edition is co-edited by Drs. Vertegaal and Ivan Poupyrev, of the Sony Interaction Laboratory in Tokyo, Japan.

"What we're talking about here is nothing short of a revolution for human-computer interaction," says Dr. Vertegaal. He compares our current use of flat, rectangular computers to the 19th-century satiric novel, Flatland: A Romance of Many Dimensions, about people who live in only two dimensions and are narrow-minded as a result. "I think computers are very much like that today," Dr. Vertegaal suggests. "You are essentially looking at a tiny tunnel into a flat, on-line world, and that causes people to think in a two-dimensional way. 'Flatland' interfaces are incredibly limited compared to natural 3D ones."

Three recent developments in computer technology have allowed inventors to move beyond the rigid, rectangular design of current devices. Advances in touch input technologies now allow for any surface to sense two-handed, multi-finger touch. An example of this is smart fabric, such as the "tank top" user interface being tested in Dr. Vertegaal's laboratory this summer.

The second development, flexible displays, is found in flexible circuit boards with organic LEDs (light emitting diodes) used to make electronic paper. These "E-Ink" (electrophoretic ink) displays are formed from millions of tiny, polarized ink capsules, half black and half white. A computer switch sends out minus or plus voltages and the ink will either attract or repel to form a display. Once the display is "painted" the electricity can be switched off. The flexible base layer allows the display to be rolled up and put inside one's pocket, like regular paper.

Kinetic Organic Interface (KOI), the third development, enables the design of computers that adjust their shape according to some computational outcome, or through interactions with users. This is expected to yield "Claytronic" 3D displays capable of displaying not just pictures, but physical shapes in three dimensions.

"We want to reduce the computer's stranglehold on cognitive processing by imbedding it and making it work more and more like the natural environment," says Dr. Vertegaal. "It is too much of a technological device now, and we haven't had the technology to truly integrate a high-resolution display in artifacts that have organic shapes: curved, flexible and textile, like your coffee mug."

Other OUI projects from Queen's Human Media Lab include:

-- The world's first completely foldable paper computer, which allows users to move up or down in a document by folding or turning the pages – a much more natural experience than using a laptop.

-- An interactive Coke can with a cylindrical display that plays videos on its surface and responds to touch. All the electronics can be detached and recycled separately from the aluminum.

-- A work bench for gadget design that simulates a real computer on ordinary objects of arbitrary shape, like a sheet of paper or a piece of Styrofoam. When displays are projected onto the surface of the paper or Styrofoam, it instantly becomes a computer.

The third project is useful for the design of new gadgets, but could also allow hardware to be downloaded from an on-line store, avoiding the wasteful purchase of new atoms, Dr. Vertegaal notes in his article. "That would be a final frontier in the design of computer interfaces that turn the natural world into software, and software into the natural world."

Source: Queen's University

Explore further: Why are flexible computer screens taking so long to develop?

Related Stories

Why are flexible computer screens taking so long to develop?

January 18, 2016

It's common to first see exciting new technologies in science fiction, but less so in stories about wizards and dragons. Yet one of the most interesting bits of kit on display at this year's Consumer Electronics Show (CES) ...

Drones do donuts, figure-eights around obstacles

January 19, 2016

Getting drones to fly around without hitting things is no small task. Obstacle-detection and motion-planning are two of computer science's trickiest challenges, because of the complexity involved in creating real-time flight ...

Seeing the big picture in photosynthetic light harvesting

January 19, 2016

To understand what goes on inside a beehive you can't just study the activity of a single bee. Likewise, to understand the photosynthetic light-harvesting that takes place inside the chloroplast of a leaf, you can't just ...

Graphene oxide 'paper' changes with strain

January 19, 2016

The same slip-and-stick mechanism that leads to earthquakes is at work on the molecular level in nanoscale materials, where it determines the shear plasticity of the materials, according to scientists at Rice University ...

Researchers outline physics of metal 3-D printing

January 15, 2016

While the most common method of metal 3D printing is growing exponentially, moving forward from producing prototypes to manufacturing critical parts will be possible only by reaching a fundamental understanding of the complex ...

Recommended for you

World is embracing clean energy, professor says

February 1, 2016

Renewable, energy efficient and flexible electricity sources are being adopted by policy makers and investors across the globe and this is sign of optimism in the battle against climate change, a University of Exeter energy ...

Battery technology could charge up water desalination

February 4, 2016

The technology that charges batteries for electronic devices could provide fresh water from salty seas, says a new study by University of Illinois engineers. Electricity running through a salt water-filled battery draws the ...

Researchers find vulnerability in two-factor authentication

February 3, 2016

Two-factor authentication is a computer security measure used by major online service providers to protect the identify of users in the event of a password loss. The process is familiar: When a password is forgotten, the ...

World's first 'robot run' farm to open in Japan

February 1, 2016

A Japanese firm said Monday it would open the world's first fully automated farm with robots handling almost every step of the process, from watering seedlings to harvesting crops.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Arikin
not rated yet Jun 02, 2008
What about the nano-wires embedded in clear plastics? Is that technology ready to display images? That would be more durable than the technologies mentioned above.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.