Fibonacci sequence fronts new nanoscience building at Bristol University

June 5, 2008
Fibonacci sequence fronts new nanoscience building at Bristol University

A famous mathematical pattern has inspired the stunning curved sail façade of Bristol University’s new £11 million Centre for Nanoscience and Quantum Information.

The façade, which was completed this week, features cladding based on the Fibonacci sequence. It is isolated from the rest of the building to prevent vibration from the wind travelling across it, affecting experiments taking place inside the Centre.

Discovered by Italian mathematician Leonardo Fibonacci in the 12th century, the sequence became widely known after it was described in Dan Brown’s bestselling novel The Da Vinci Code. Starting with 0 and 1, each new number in the series is simply the sum of the two before it. The start of the sequence runs: 0, 1, 1, 2, 3, 5, 8, 13, 21…

The sequence can be found regularly in Nature with spirals on a sunflower head, the arrangement of scales on pine cones and the spiral on snail shells all following the same mathematical pattern.

The Centre for Nanoscience and Quantum Information, built by Willmott Dixon Construction, is a four-storey concrete-framed structure containing some of the quietest laboratories in the world.

Clive Pople, operations director at Willmott Dixon said: “We have never done anything as complex as this and it has certainly been a challenge. Due to the unique nature of the building we have worked extremely closely with the University to ensure that every detail has been implemented correctly. With no other examples in the country to act as benchmark we have been working in completely new territory.”

Based on Tyndall Avenue, the Centre for Nanoscience and Quantum Information will offer extremely low levels of acoustic noise, vibration and air movements and provide a world class facility for scientific research. As well as addressing deep questions in fundamental science, the research to be carried out in the building will offer opportunities for the development of future computing, communications and health technologies, as well as advanced materials, for example for the aerospace industry.

Source: Bristol University

Explore further: Weighing and imaging molecules one at a time

Related Stories

Weighing and imaging molecules one at a time

April 27, 2015

Building on their creation of the first-ever mechanical device that can measure the mass of individual molecules, one at a time, a team of Caltech scientists and their colleagues have created nanodevices that can also reveal ...

Tiny invention may harness big energy from small spores

January 30, 2013

(Phys.org)—One of Ozgur Sahin's first machines was a mechanical adding device made from Legos. He made it when he was 11 and hasn't stopped making gadgets since. In graduate school Sahin created an atomic force microscope ...

Recommended for you

Just how good (or bad) is the fossil record of dinosaurs?

August 28, 2015

Everyone is excited by discoveries of new dinosaurs – or indeed any new fossil species. But a key question for palaeontologists is 'just how good is the fossil record?' Do we know fifty per cent of the species of dinosaurs ...

Fractals patterns in a drummer's music

August 28, 2015

Fractal patterns are profoundly human – at least in music. This is one of the findings of a team headed by researchers from the Max Planck Institute for Dynamics and Self-Organization in Göttingen and Harvard University ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

weewilly
not rated yet Jun 05, 2008
Why does this mathematical sequence of numbers keep coming up? I run into this every so often and one of these days during my retirement I am going to study it. HHHhhmmmm!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.