Exposing the Sensitivity of Extreme Ultraviolet Photoresists

June 26, 2008
Exposing the Sensitivity of Extreme Ultraviolet Photoresists
NIST researchers exposed a 300 mm silicon wafer with incrementally increasing doses of extreme ultraviolet light (EUV) in 15 areas. After the wafer was developed, the team determined that the seventh exposure was the minimum dose required (E0) to fully remove the resist. Credit: NIST

Researchers at the National Institute of Standards and Technology (NIST) have confirmed that the photoresists used in next-generation semiconductor manufacturing processes now under development are twice as sensitive as previously believed. This finding, announced at a workshop last month,* has attracted considerable interest because of its implications for future manufacturing. If the photoresists are twice as sensitive as previously thought, then they are close to having the sensitivity required for high volume manufacturing, but the flip side is that the extreme ultraviolet optical systems in the demonstration tools currently being used are only about half as effective as believed.

Extreme ultraviolet lithography (EUVL) is a process analogous to film photography. A silicon wafer is coated with photoresist and exposed to EUV light that reflects off a patterned “photomask.” Where the light strikes the resist it changes the solubility of the coating. When developed, the soluble portions wash away leaving the same pattern exposed on the silicon surface for the processing steps that ultimately create microcircuits.

The drive to make circuits with ever smaller features has pushed manufacturers to use shorter and shorter wavelengths of light. EUVL is the next step in this progression and requires developing both suitable light sources and photoresists that can retain the fine details of the circuit, balancing sensitivity, line edge roughness and spatial resolution. NIST researcher Steve Grantham says that optical lithography light sources in use today emit light with a wavelength of about 193 nanometers, which borders on optical wavelengths. EUVL sources produce light with wavelengths about an order of magnitude smaller, around 13.5 nanometers. Because this light does not travel through anything—including lenses—mirrors have to be used to focus it.

Until recently, EUV photoresist sensitivity was referenced to a measurement technique developed at Sandia National Labs in the 1990s. Late in 2007, scientists at the Advanced Light Source at Lawrence Berkeley National Laboratory in Berkeley, Calif., used a NIST-calibrated photodetector to check the standard. Their detector-based measurements indicated that the resist’s sensitivity was about twice that of the resist-based calibration standard.

Following on the intense interest that these results generated when the Berkeley group presented them at a conference in February, the Intel Corporation asked scientists at NIST to make their own independent determination of the EUVL resist sensitivity to validate the results. Measurements conducted at the NIST SURF III Synchrotron Ultraviolet Radiation Facility agreed with those of the Berkeley group. The fact that the photoresist is now known to be twice as sensitive to the EUV light implies that half as much light energy as had been expected is arriving at the wafer.

“These results are significant for a technology that faces many challenges before it is slated to become a high-volume manufacturing process in 2012,” Grantham says. “It should open the eyes of the industry to the need for accurate dose metrology and the use of traceable standards in their evaluations of source and lithography tool performance.”

Source: NIST

Explore further: Researchers demonstrate measurement system able to resolve quantum fluctuations

Related Stories

Electrons corralled using new quantum tool

May 7, 2015

Researchers have succeeded in creating a new "whispering gallery" effect for electrons in a sheet of graphene—making it possible to precisely control a region that reflects electrons within the material. They say the accomplishment ...

Electron trapping harnessed to make light sensors

April 21, 2015

Traps. Whether you're squaring off against the Empire or trying to wring electricity out of sunlight, they're almost never a good thing. But sometimes you can turn that trap to your advantage. A team from the University of ...

About time: New record for atomic clock accuracy

April 21, 2015

In another advance at the far frontiers of timekeeping by National Institute of Standards and Technology researchers, the latest modification of a record-setting strontium atomic clock has achieved precision and stability ...

Recommended for you

Team develops targeted drug delivery to lung

September 2, 2015

Researchers from Columbia Engineering and Columbia University Medical Center (CUMC) have developed a new method that can target delivery of very small volumes of drugs into the lung. Their approach, in which micro-liters ...

Team creates functional ultrathin solar cells

August 27, 2015

(Phys.org)—A team of researchers with Johannes Kepler University Linz in Austria has developed an ultrathin solar cell for use in lightweight and flexible applications. In their paper published in the journal Nature Materials, ...

Magnetic fields provide a new way to communicate wirelessly

September 1, 2015

Electrical engineers at the University of California, San Diego demonstrated a new wireless communication technique that works by sending magnetic signals through the human body. The new technology could offer a lower power ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

guiding_light
5 / 5 (2) Jun 27, 2008
What makes them think sensitivity is only based on the primary radiation? It is based on the process sensitivity to chemical effects from secondary electrons. This is strictly a random Monte Carlo number.
plasma_guy
5 / 5 (2) Jun 27, 2008
Mask defects are the big EUV killer.

http://www.semico...362.html
guiding_light
5 / 5 (2) Apr 26, 2009
I now think the variable number of secondary electrons generated in the photodiode for calculating wafer in-plane dose screwed them up.
guiding_light
not rated yet May 10, 2009
I now think the variable number of secondary electrons generated in the photodiode for calculating wafer in-plane dose screwed them up.


http://www.google...AAAAEBAJ&dq=patent:6710351&as_drrb_ap=q&as_minm_ap=0&as_miny_ap=&as_maxm_ap=0&as_maxy_ap=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.