Researchers find an evolutionarily preserved signature in the primate brain

June 20, 2008

Researchers from Uppsala University, Karolinska Institute, and the University of Chicago, have determined that there are hundreds of biological differences between the sexes when it comes to gene expression in the cerebral cortex of humans and other primates. These findings, published June 20th in the open-access journal PLoS Genetics, indicate that some of these differences arose a very long time ago and have been preserved through the evolution of primates. These conserved differences constitute a signature of sex differences in the brain.

More obvious gender differences have been preserved throughout primate evolution; examples include average body size and weight, and genitalia design. This novel study focuses on gene expression within the cerebral cortex – that area of the brain that is involved in such complex functions in humans and other primates as memory, attentiveness, thought processes, and language.

The researchers measured gene expression in the brains of male and female primates from three species: humans, macaques, and marmosets. To measure activity of specific genes, the products of genes (RNA) obtained from the brain of each animal were hybridized to microarrays containing thousands of DNA clones coding for thousands of genes. The authors also investigated DNA sequence differences among primates for genes showing different levels of expression between the sexes.

"Knowledge about gender differences is important for many reasons. For example, this information may be used in the future to calculate medical dosages, as well as for other treatments of diseases or damage to the brain," says Professor Elena Jazin of Uppsala University.

Lead author Björn Reinius notes that the study does not determine whether these differences in gene expression are in any way functionally significant. Such questions remain to be answered by future studies.

Source: Public Library of Science www.plosgenetics.org/doi/pgen.1000100

Explore further: Switching mouse neural stem cells to a primate-like behavior

Related Stories

Switching mouse neural stem cells to a primate-like behavior

August 7, 2015

When the right gene is expressed in the right manner in the right population of stem cells, the developing mouse brain can exhibit primate-like features. In a paper publishing August 7th in the Open Access journal PLOS Biology, ...

Making sense of our evolution

July 13, 2015

The science about our our special senses - vision, smell, hearing and taste - offers fascinating and unique perspectives on our evolution.

What we can learn from primate personality

June 18, 2015

Every human is different. Some are outgoing, while others are reserved and shy. Some are focused and diligent, while others are haphazard and unfussed. Some people are curious, others avoid novelty and enjoy their rut.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.