CSIRO scientist discovers natural 'invisible' gold

June 23, 2008

The search for these natural but 'invisible' nanoparticles is important. If they can be proved to exist, the knowledge will help give us a deeper understanding of how gold can be transported and deposited by geological processes, and therefore help explorers to find new gold deposits in Australia.

Now, hard evidence that gold nanoparticles have finally been seen in nature is presented in a paper published in GEOLOGY and authored by CSIRO Scientists from the Minerals Down Under National Research Flagship and CRC LEME, in collaboration with scientists from Curtin University and the University of Western Australia.

Lead author, CSIRO's Dr Rob Hough, explains that the particles were discovered in Western Australia. "In the southern areas of the State, groundwater is very salty and acidic. This water dissolves primary gold and re-deposits it as pure gold crystals on fracture surfaces and in open pore spaces," he says.

"On investigation of these crystals, there appeared to be a dark band across them. However, high magnification imaging showed the band was in fact, a mass of gold nanoparticles and nanoplates. These are identical to those being manufactured in laboratories around the world for their unique properties."

Clays from the fracture surface were then analysed. There was no gold visible, but analysis showed the clays contained up to 59 parts-per-million of gold. The research team concluded that the nanoparticles of gold they had imaged represented the 'invisible' gold in the clay, and that this nanosized gold was common in similar environments.

"The gold nanoparticles have not been identified earlier because they are transparent to electron beams and effectively invisible," Dr Hough says. "However, they are probably a common form of gold in this type of natural environment worldwide, where saline water interacts with gold deposits. They also provide the first direct observation of the nanoscale mobility of gold during weathering."

With gold fetching around (AU) $950 an ounce and expected to rise, this research is good news for Australia's gold explorers.

Source: CSIRO Australia

Explore further: Self-assembling nanoparticles take their cues from their surroundings

Related Stories

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

Where is solar power headed?

July 22, 2015

Most experts agree that to have a shot at curbing the worst impacts of climate change, we need to extricate our society from fossil fuels and ramp up our use of renewable energy.

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.