'Chatter Box' computer will unravel the science of language

June 12, 2008

Scientists are to use a powerful super computer to mimic the part of the brain that controls speech and language function to better understand what goes wrong after brain damage caused by trauma or stroke.

Psychologists at The University of Manchester have teamed up with colleagues in the School of Computer Science to develop the speech and language model using a computer system that will be up to 1,000 times more powerful than a standard PC.

Dubbed 'Chatter Box', the £940K, five-year study is linked to the £1 million 'Brain Box' project that aims to build this new breed of computer based on biological principles that will enable it to carry out highly complex functions like those performed by the human brain.

"The human brain contains about one hundred billion nerve cells or neurons that each have to make a simple decision as to whether to 'fire' or not," said Professor Steve Furber, in the School of Computer Science.

"Each neuron's decision is based on how many other connecting neurons have fired recently. When this simple computation is distributed over billions of neurons, it is capable of supporting all the highly complex behavioural characteristics exhibited by humans.

"The Brain Box computer is being built using simple microprocessors that are designed to interact like the networks of neurons in the brain allowing it to replicate sophisticated functions such as speech."

Once the team have successfully produced the machine they will use it to build a model of normal human language capable of reading, comprehending, speaking, naming and repeating basic words in English.

"To train such a model using existing computer simulators would take far too long – possibly more than a lifetime," said Dr Stephen Welbourne, in the School of Psychological Sciences.

"We will validate this model by showing that damaging it can lead to the same patterns of behaviour as those found in brain-damaged individuals.

"We will then use the model to predict the results of different speech therapy strategies and will test these predictions in a population of stroke patients who have linguistic problems.

"Our goal is to understand how the brain supports language function, how this breaks down after brain damage and the mechanisms that support recovery and rehabilitation."

Source: University of Manchester

Explore further: Computers can perceive image curves like artists

Related Stories

Computers can perceive image curves like artists

November 23, 2015

Imagine computers being able to understand paintings or paint abstract images much like humans. Bo Li at Umeå University in Sweden demonstrates a breakthrough concept in the field of computer vision using curves and lines ...

Ten ways advanced computing catalyzes science

November 19, 2015

When researchers need to compare complex new genomes, or map new regions of the Arctic in high-resolution detail, or detect signs of dark matter, or make sense of massive amounts of functional MRI data, they turn to the high-performance ...

Technology that lets self-driving cars, robots see

November 2, 2015

LiDAR, once used in the Apollo 15 lunar mission, has shrunk in size and cost, making it easier for researchers and product makers to bring the 3D vision mapping technology to smart devices.

How sensorimotor intelligence may develop

October 27, 2015

It is fascinating to observe a robot exploring its physical possibilities and surroundings, and subsequently developing different self-taught behaviors without any instructions. In their paper published on October, 26, 2015 ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.