'Addicted' cells provide early cancer diagnosis

June 10, 2008

Scientists at the Institute of Food Research have detected subtle changes that may make the bowel more vulnerable to the development of tumours.

With support from the Food Standards Agency and the Biotechnology and Biological Sciences Research Council they are investigating whether diet could control these changes and delay or reverse the onset of cancer.

"We looked at changes in 18 genes that play a role in the very earliest stages of colorectal cancer," says Professor Ian Johnson at the Institute of Food Research.

"We detected clear chemical differences in these genes in otherwise normal tissue in cancer patients.

"This represents a new way to identify defects that could eventually lead to cancer."

All cells carry a complete set of instructions for the whole organism in their nuclear DNA, but to define the specialised structure and functions of each particular cell type, genes must be switched on or firmly off, over the course of the cell's life-cycle.

One of the mechanisms controlling the activities of the genes in a cell is the "epigenetic code", a set of chemical tags attached to the DNA molecule, marking individual genes for expression, or for silence. It is well known that the abnormal behaviour of cancer cells is partly due to mistakes in this epigenetic code, some of which switch on genes for growth, whilst others switch off genes that would otherwise cause abnormal cells to destroy themselves.

Scientists at IFR are exploring the possibility that such mistakes in the epigenetic code may begin to occur in apparently normal tissues, long before the appearance of a tumour.

In the current study published in the British Journal of Cancer they measured the numbers of methyl groups attached to DNA taken from the cells lining the large intestine of bowel cancer patients. They found subtle changes that may make the whole surface of the bowel more vulnerable to the eventual development of tumours by causing the 'addiction' of cells to abnormal gene expression.

Some of these changes seem to occur naturally with age, but, supported by the Food Standards Agency, IFR is investigating the possibility that factors in our lifestyle such as diet, obesity and exercise can accelerate or delay DNA methylation as we grow older, thus giving us some degree of control over this vital aspect of our long-term health.

Professor Nigel Brown, Director of Science and Technology at BBSRC said: "Basic research in the relatively young field of epigenetics is already contributing to our understanding of human health. Understanding how epigenetic processes work to maintain healthy cells and tissues is the key to long-term health because, as we see here, the breakdown of these normal processes may subsequently cause disease. BBSRC funds a range of research in the field of epigenetics and has been encouraging networking amongst members of the European epigenetics research community."

Source: Norwich BioScience Institutes

Explore further: Cell mechanics are more complex than previously thought

Related Stories

Cell mechanics are more complex than previously thought

August 27, 2015

Cell mechanics are considerably more complex than previously thought and may affect cell structures at various levels. This finding is based on a collaborative research project conducted by an international research team ...

Reprogramming the oocyte

August 26, 2015

(Phys.org)—Among other things, the egg is optimized to process the sperm genome. The cytoplasmic factors that make this possible also give the egg the ability to reprogram the nuclei from other kinds of cells if these nuclei ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.