Self-Assembled Viruses

May 30, 2008

Viruses are true experts at importing genetic material into the cells of an infected organism. This trait is now being exploited for gene therapy, in which genes are brought into the cells of a patient to treat genetic diseases or genetic defects. Korean researchers have now made an artificial virus. As described in the journal Angewandte Chemie, they have been able to use it to transport both genes and drugs into the interior of cancer cells.

Natural viruses are extremely effective at transporting genes into cells for gene therapy; their disadvantage is that they can initiate an immune response or cause cancer. Artificial viruses do not have these side effects, but are not especially effective because their size and shape are very difficult to control—but crucial to their effectiveness. A research team headed by Myongsoo Lee has now developed a new strategy that allows the artificial viruses to maintain a defined form and size.

The researchers started with a ribbonlike protein structure (β-sheet) as their template. The protein ribbons organized themselves into a defined threadlike double layer that sets the shape and size. Coupled to the outside are “protein arms” that bind short RNA helices and embed them. If this RNA is made complementary to a specific gene sequence, it can very specifically block the reading of this gene. Known as small interfering RNAs (siRNA), these sequences represent a promising approach to gene therapy.

Glucose building blocks on the surfaces of the artificial viruses should improve binding of the artificial virus to the glucose transporters on the surfaces of the target cells. These transporters are present in nearly all mammalian cells. Tumor cells have an especially large number of these transporters.

Trials with a line of human cancer cells demonstrated that the artificial viruses very effectively transport an siRNA and block the target gene.

In addition, the researchers were able to attach hydrophobic (water repellant) molecules—for demonstration purposes a dye—to the artificial viruses. The dye was transported into the nuclei of tumor cells. This result is particularly interesting because the nucleus is the target for many important antitumor agents.

Citation: Myongsoo Lee, Filamentous Artificial Virus from a Self-Assembled Discrete Nanoribbon, Angewandte Chemie International Edition 2008, 47, No. 24, 4525–4528, doi: 10.1002/anie.200800266

Source: Wiley

Explore further: DNA-based nanodevices for molecular medicine

Related Stories

DNA-based nanodevices for molecular medicine

September 24, 2015

Researchers from Aalto University have published an article in the recent Trends in Biotechnology journal. The article discusses how DNA molecules can be assembled into tailored and complex nanostructures, and further, how ...

Viruses join fight against harmful bacteria

September 23, 2015

In the hunt for new ways to kill harmful bacteria, scientists have turned to a natural predator: viruses that infect bacteria. By tweaking the genomes of these viruses, known as bacteriophages, researchers hope to customize ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Imitating viruses to deliver drugs to cells

August 31, 2015

Viruses are able to redirect the functioning of cells in order to infect them. Inspired by their mode of action, scientists from the CNRS and Université de Strasbourg have designed a "chemical virus" that can cross the double ...

The science and fiction behind Blade Runner

August 31, 2015

Science – or strange permutations of it at least – is everywhere in the cinema. At any one time on movie screens around the world, humans are being threatened by lethal viruses, cured from terminal illness by miracle ...

New fluorescent polymer makes deformation visible

August 13, 2015

A new type of polymer can show that it has changed shape. After exposure to UV light, the chain-like molecules emit a different colour of light. This opens a new pathway for research into how viruses function in a cell and ...

Recommended for you

NASA measuring the pulsating aurora

October 7, 2015

Thanks to a lucky conjunction of two satellites, a ground-based array of all-sky cameras, and some spectacular aurora borealis, researchers have uncovered evidence for an unexpected role that electrons have in creating the ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...


Adjust slider to filter visible comments by rank

Display comments: newest first

4 / 5 (1) Jun 04, 2008
this stuff sound like playing with lego, perhaps soon enough it will appear to be just this easy.
not rated yet Jun 04, 2008
i am legend, anyone? lol

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.