Scientists develop way to predict properties of light nuclei

May 21, 2008

Scientists have spent 70 years trying to predict the properties of nuclei, but have had to settle for approximate models because computational techniques were not equal to the task.

In the 1990s, scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory and elsewhere succeeded in breaking through the computational barrier to provide accurate predictions of light nuclei based on how individual neutrons and protons interact with each other. Now they are learning to compute what happens when nuclei collide.

"We have new tools that should allow us to compute nuclear reaction rates that determine how the stars work and how the nuclei around us are made in the universe," physicist Ken Nollett said.

Predicting nuclear properties requires elaborate calculations in light elements such as helium, but it becomes increasingly complicated in heavier elements. Using advanced mathematical models and sophisticated computers, Argonne scientists have been able to predict the properties of elements up to carbon 12.

Extending these calculations to include colliding nuclei will help to understand the origins of the elements and the insides of stars, where such collisions occur. Studies of stars and element production rely on collision properties provided by complicated experiments. Nollett’s calculations will supplement these experiments, maybe even making some of them unnecessary.

"Astrophysics depends on these difficult experiments," Nollett said. "Our calculations should provide another way to get that information."

Source: Argonne National Laboratory

Explore further: We are lucky to live in a universe made for us

Related Stories

We are lucky to live in a universe made for us

September 15, 2015

To a human, the universe might seem like a very inhospitable place. In the vacuum of space, you would rapidly suffocate, while on the surface of a star you would be burnt to a crisp. As far as we know, all life is confined ...

Six new isotopes of the superheavy elements discovered

October 26, 2010

( -- A team of scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory has detected six isotopes, never seen before, of the superheavy elements 104 through 114. Starting with the creation ...

Getting a grip on exotic atomic nuclei

February 18, 2015

A new model describing atomic nuclei, proposed by a physicist from the University of Warsaw Faculty of Physics, more accurately predicts the properties of various exotic isotopes that are created in supernova explosions or ...

Atomic nuclei intimately entangled by a quantum measurement

October 17, 2012

Scientists from the Netherlands (Delft University of Technology and the FOM Foundation) and the UK (Element Six) have brought two atomic nuclei in a diamond into a quantum entangled state. This exotic relation was created ...

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

3 / 5 (2) May 27, 2008
I urge Ken Nollett to study the "Cradle of the Nuclides" that shows the properties of the 3,000 different types of nuclei that comprise all of the visible matter in the universe:" title="http://" rel="nofollow" target="_blank">http://www.omatum...Data.htm

We used the "Cradle of the Nuclides" eight (8) years ago to show that repulsive interactions between neutrons power the Sun and the cosmos.


O. Manuel, Michael Mozina, Hilton Ratcliffe, " On the cosmic nuclear cycle and the similarity of nuclei and stars", J. Fusion Energy 25 , 107-114 (2006).

With kind regards,
Oliver K. Manuel

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.