Scientists develop way to predict properties of light nuclei

May 21, 2008

Scientists have spent 70 years trying to predict the properties of nuclei, but have had to settle for approximate models because computational techniques were not equal to the task.

In the 1990s, scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory and elsewhere succeeded in breaking through the computational barrier to provide accurate predictions of light nuclei based on how individual neutrons and protons interact with each other. Now they are learning to compute what happens when nuclei collide.

"We have new tools that should allow us to compute nuclear reaction rates that determine how the stars work and how the nuclei around us are made in the universe," physicist Ken Nollett said.

Predicting nuclear properties requires elaborate calculations in light elements such as helium, but it becomes increasingly complicated in heavier elements. Using advanced mathematical models and sophisticated computers, Argonne scientists have been able to predict the properties of elements up to carbon 12.

Extending these calculations to include colliding nuclei will help to understand the origins of the elements and the insides of stars, where such collisions occur. Studies of stars and element production rely on collision properties provided by complicated experiments. Nollett’s calculations will supplement these experiments, maybe even making some of them unnecessary.

"Astrophysics depends on these difficult experiments," Nollett said. "Our calculations should provide another way to get that information."

Source: Argonne National Laboratory

Explore further: First stars in the universe left a unique signature

Related Stories

UW researchers scaling up fusion hopes

June 2, 2015

Producing reliable fusion energy—the same process that powers the sun—has long been a holy grail of scientists here on Earth. It releases no greenhouse gases, can be fueled by elements found in seawater and produces no ...

Theory of the strong interaction verified

March 26, 2015

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after the discovery ...

Recommended for you

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
3 / 5 (2) May 27, 2008
I urge Ken Nollett to study the "Cradle of the Nuclides" that shows the properties of the 3,000 different types of nuclei that comprise all of the visible matter in the universe:

http://www.omatumr.com/Data/2000Data.htm" title="http://http://www.omatumr.com/Data/2000Data.htm" rel="nofollow" target="_blank">http://www.omatum...Data.htm

We used the "Cradle of the Nuclides" eight (8) years ago to show that repulsive interactions between neutrons power the Sun and the cosmos.

REFERENCE:

O. Manuel, Michael Mozina, Hilton Ratcliffe, " On the cosmic nuclear cycle and the similarity of nuclei and stars", J. Fusion Energy 25 , 107-114 (2006).
http://arxiv.org/.../0511051

With kind regards,
Oliver K. Manuel
http://www.omatumr.com

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.