New role found for a cardiac progenitor population

May 14, 2008

In a discovery that could one day lead to an understanding of how to regenerate damaged heart tissue, researchers at the University of California, San Diego have found that parent cells involved in embryonic development of the epicardium – the cell layer surrounding the outside of the heart – give rise to three important types of cells with potential for cardiac repair.

In a study published online May 14 in advance of publication in the journal Nature, researchers led by Sylvia Evans, Ph.D., professor of pharmacology at the Skaggs School of Pharmacy and Pharmaceutical Sciences and professor of medicine at UC San Diego, discovered in mice that developing embryonic cells that form the epicardium develop into cardiomyocytes, or muscle cells, as well as into connective tissue and vascular support cells of the heart.

The UCSD team generated mice which enabled lineage studies of epicardial cells, utilizing a marker for these lineages called a T-box transcription factor, Tbx18. “The surprising finding was that during the earliest stages of development, myocytes are also generated from parent cells within the embryonic epicardium,” said Evans. The Evans lab went on to demonstrate that, in the adult mouse, epicardial cells have lost their earlier embryonic ability to generate cardiomyocytes.

“Our findings raise the possibility that if we can restore the ability of adult epicardial cells in mammals to generate cardiomyocytes, it may enhance their future potential for cardiac repair following injury, such as a heart attack,” said co-first author Jody C. Martin of UCSD’s Department of Bioengineering.

While the adult mammalian heart has lost this capacity to generate new heart muscle, according to Evans, other investigators have demonstrated that zebrafish can fully regenerate their hearts following injury. This regeneration is associated with migration of Tbx 18-expressing cells to the site of injury, and the new formation of cardiomycytes.

If Tbx18-cell migration is prevented, there is no repair. The UCSD researchers’ findings suggest that one reason that zebrafish can regenerate their hearts may be that adult zebrafish epicardium somehow retains the capacity to generate cardiomyocytes.

Source: University of California - San Diego

Explore further: UN: Goals helped lift one billion people from extreme poverty

Related Stories

Mastering magnetic reconnection

Jun 17, 2015

On March 12, National Aeronautics and Space Administration (NASA) scientists launched four observational satellites into space, officially beginning the Magnetospheric Multiscale (MMS) Mission. The diminutive ...

Plant fertility—how hormones get around

May 26, 2015

Researchers at Tokyo Institute of Technology have identified a transporter protein at the heart of a number of plant processes associated with fertility and possibly aging.

Emotion detection software used to design advertising

May 06, 2015

The marketing industry has revolutionized the way people create publicity. Through the emotions, it defines which images, colors and objects best generate product identity and achieve great sales.

Surviving the heat for a good beer

Apr 16, 2015

Researchers at the Institute of Biological, Environmental and Rural Sciences at Aberystwyth University have collaborated with scientists from Dijon, France to try to solve the problem of bad tasting beer.

Recommended for you

Nursing home care for minorities improves

29 minutes ago

A new study of nursing homes has found that, while disparities continue to exist, the quality of care in homes with higher concentrations of racial and ethnic minority residents has improved and that this progress appears ...

Medicaid: No longer the welfare medicine afterthought

29 minutes ago

July 30, 2015 marks the 50th Anniversary of Medicaid. Signed into law by President Lyndon B. Johnson, the program transformed the lives of millions of Americans who previously were unable to afford healthcare coverage. In ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.