Quantum computers take step toward practicality with demonstration of new device

May 9, 2008
Quantum computers take step toward practicality with demonstration of new device

Computers based on the powerful properties of quantum mechanics have the potential to revolutionize information technology and security, but for decades they have remained more theoretical than practical, and difficult to scale up. That is changing, however, as demonstrated in a report this week in the journal Science.

In the paper, engineers and physicists from Stanford and the University of California at Santa Barbara demonstrate a potential progenitor of an essential component of quantum computers, "a logic gate" that enables interaction between just two particles of light.

The key advance is a solid state device that can reliably produce an interaction between the light particles, called photons. The team, led by Stanford Electrical Engineering Assistant Professor Jelena Vuckovic, did that by nestling a tiny ball of indium arsenide molecules called a "quantum dot" within a cavity on a photonic crystal, a chip of semiconducting gallium arsenide precisely drilled with holes to give it the ability to trap photons so that they interact with the quantum dot.

"We have demonstrated a system composed of a single quantum dot in a cavity that can be used to realize such a gate, and we demonstrated that two photons can be made to interact with each other via this system," says Stanford applied physics doctoral student Ilya Fushman, a lead author on the paper along with two other doctoral students from the Vuckovic group, Dirk Englund and Andrei Faraon. "So we showed that such a gate is possible and demonstrated the first necessary steps in that direction."

Prior demonstrations of strong interactions between individual photons have been only done with systems that required complicated atom trapping techniques that are not as practical as this semiconductor-chip implementation, Vuckovic says, because they would be difficult to extend to the hundreds or thousands of logic nodes required for a quantum computer. But the new device is made with materials and manufacturing processes that are familiar to computer chip makers.

Logic from light

In computing, a logic gate is built to accept a set of inputs and, depending on their properties, provide a specific output. In the binary logic found in today's electrical computers, a certain gate will yield a "1" only if all of its inputs are "1"s. Otherwise it will yield a "0." Similarly, a quantum photonic gate would work by detecting the properties of input photons from two light beams, called "control" and "signal," and then producing an output based on those, such as by flipping the polarization of one of the input photons.

In their experiment, the researchers shined two beams of photons upon the quantum dot. When a photon from the signal beam struck the dot alone, it was re-emitted without modification. If a photon from the "control" beam got there first, then the amount of time that the photon from the signal beam spent in the cavity changed. That difference in time, called a "phase shift," can be mapped to a difference in photon polarization.

The team has demonstrated that when the two photons are identical, a phase shift of 12.6 degrees is achieved. This is only a fraction of the 180-degree rotation required to make a full logic gate, Vuckovic says, but by combining several of the devices in a row, her team expects to attain the needed effect. Also, when the signal and control photons are allowed to differ, the phase shifts can be up to 45 degrees.

Other challenges include eliminating manufacturing imperfections and reliably placing the quantum dots right where they need to be within the crystals, but the team is optimistic.

"We are hopeful that these engineering challenges can be overcome to open the path to chip-based high-fidelity quantum logic with photons," Vuckovic says.

Source: Stanford University

Explore further: A little light interaction leaves quantum physicists beaming

Related Stories

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...

Paving the way for a faster quantum computer

August 11, 2015

A team of physicists from the University of Vienna and the Austrian Academy of Sciences have demonstrated a new quantum computation scheme in which operations occur without a well-defined order. The researchers led by Philip ...

Moore's Law is 50 years old but will it continue?

July 20, 2015

It's been 50 years since Gordon Moore, one of the founders of the microprocessor company Intel, gave us Moore's Law. This says that the complexity of computer chips ought to double roughly every two years.

Density-near-zero acoustical metamaterial made in China

July 14, 2015

When a sound wave hits an obstacle and is scattered, the signal may be lost or degraded. But what if you could guide the signal around that obstacle, as if the interfering barrier didn't even exist? Recently, researchers ...

Recommended for you

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

MikeMarianiMD,FAAP
5 / 5 (3) May 09, 2008
Stunningly brilliant!
Johnwoo
not rated yet May 14, 2008
These guys should check out this article for precise alignment using quantum dots, it might help put the dots where they need to be within the crystal:
http://www.physor...381.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.