Mapping of prostate cancer genes opens the door to new treatments

May 20, 2008

Genetic changes during the initiation and progression of prostate cancer have eluded scientists to date. Now for the first time researchers have identified a specific gene expression profile of prostate cancer stem cells, with important implications for future treatments.

The findings, published in BioMed Central’s open access journal Genome Biology, revealed 581 genes that are differentially expressed in certain prostate cancer cells, highlighting several pathways important in the cancer stem-cells biology, and offering targets for new chemopreventative and chemotherapeutic approaches.

The cells in the study represent less than 0.1% of prostate cancer tumors, and have properties that mark them out as cancer stem cells. The cells renew themselves, are highly invasive, and have a longer lifetime than normal stem cells. They also feature a primitive epithelial phenotype and can differentiate to recapitulate phenotypes seen in prostate tumors. The cells are found in all stages and types of prostate cancer.

Expression profiling of prostate cancers typically uses tumor cell mass samples to identify individual genes. In this study, researchers harnessed advances in microarray and target labelling technologies to produce a functionally annotated expression profile of these prostate cancer stem cells.

The team, from the YCR Cancer Research Unit at the University of York and Pro-cure Therapeutics Ltd, created a malignant stem cell signature by combining genes significantly overexpressed in stem cells with those significantly overexpressed in malignant stem cells. Quantitative RT-PCR, flow cytometry and immunocytochemistry were used to validate the gene expression changes.

Genes associated with inflammation were prominent in the cancer stem cell expression profile. Potential therapeutic target NFκB is known to promote cell survival. The researchers showed that an NFκB inhibitor triggered programmed cell death in cancer stem cells, but spared normal stem cells. This provides a potential therapeutic target for this rare group of cells, which are unlikely to be affected by current chemotherapy regimens.

“For the first time we are looking at the subpopulation of cancer cells which actually initiate new tumors” explains Anne Collins, who coordinated the study. “The genetic profiling we have carried out should stimulate new lines of research directed towards stem cell treatments for cancer”

Source: BioMed Central

Explore further: Novel technology vastly improves CRISPR/Cas9 accuracy

Related Stories

Novel technology vastly improves CRISPR/Cas9 accuracy

November 18, 2015

A new CRISPR/Cas9 technology developed by scientists at the University of Massachusetts Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target ...

Human gene prevents regeneration in zebrafish

November 18, 2015

Regenerative medicine could one day allow physicians to correct congenital deformities, regrow damaged fingers, or even mend a broken heart. But to do it, they will have to reckon with the body's own anti-cancer security ...

The life story of stem cells

November 9, 2015

Stem cells ensure the regeneration and maintenance of the body's tissues. Diseases like cancer can arise if they spiral out of control. In collaboration with doctors from Aachen University Hospital, scientists from the Max ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet May 21, 2008
Defining the "gene" and its "mode of expression" is imperative! Is it a "molecule" and its mode of expression an "electron" with certain "spin"? The debate is long overdue! Let physicists into the lab!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.