Physicists develop laser with bandwith spanning 2 telecom windows

May 19, 2008

A team of physicists in the Institute for Ultrafast Spectroscopy and Lasers (IUSL) of the Physics Department at The City College of New York (CCNY) have developed new near-infrared broadband laser materials with tunability ranges around triple those of earlier crystals. The new crystals have a tunability range of as much as 460 nanometers (nm) and have potential application in such fields as telecommunications, biomedical imaging and remote sensing.

“For the first time tunable laser operation was achieved at both the 1.33 um (microns) and 1.55 um telecommunication windows from a single optical center in trivalent chromium (Cr3+) doped LiInSiO4 (lithium iridium silicate) (Cr3+:LISO) and LiInGeO4 (lithium iridium germanate) (Cr3+:LIGO) single crystals,” said Dr. Robert R. Alfano, Distinguished Professor of Science and Engineering and Director of IUSL.

The crystals have the widest bandwidth and the most near-infrared shifted wavelength range for laser operation ever demonstrated for the Cr3+ ion, noted Professor Alfano, who earlier this month was awarded The Optical Society of America’s Charles Hard Townes Award for his discovery of and work on the supercontinuum.

The Cr3+:LISO crystal was tunable in the 1,160 nm to 1,620 nm range; the Cr3+:LIGO crystal was tunable in the 1,150 to 1,600 nm range. Fosterite and Cunyite, earlier crystals developed at CCNY, have bandwidths of 165 nm (1,173 nm to 1,338 nm) and 144 nm (1,348 nm to 1,482 nm), respectively.

Because of their strong optical absorption in the range of laser diode pump sources and quantum efficiency of 50 percent, the new materials have promise for use in miniature broadband laser devices for telecommunication industry, biomedical imaging, optical coherence tomography, laser spectroscopy, ultrafast pulse generation and remote sensing, he added.

Source: City College of New York

Explore further: Researchers demonstrate first laser arrays monolithically grown on 300mm silicon wafers

Related Stories

It's a beauty: JILA's quantum crystal is now more valuable

November 5, 2015

Physicists at JILA have made their "quantum crystal" of ultracold molecules more valuable than ever by packing about five times more molecules into it. The denser crystal will help scientists unlock the secrets of magnets ...

3-D laser printing of whispering-gallery-mode microcavities

October 30, 2015

Whispering-Gallery-Mode (WGM) microcavities that confine light in a small volume with high quality (Q) factors and enhance interaction of light with matters inside the cavity have shown promising applications as an element ...

Physicists uncover novel phase of matter

October 26, 2015

A team of physicists led by Caltech's David Hsieh has discovered an unusual form of matter—not a conventional metal, insulator, or magnet, for example, but something entirely different. This phase, characterized by an unusual ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.