Nixing immaturity in red blood cells

May 4, 2008

A process of self-digestion called autophagy prompts the maturation of red blood cells. Without a protein called Nix, the cells would not effectively rid themselves of organelles called mitochondria and consequently become short-lived, leading to anemia, said researchers at Baylor College of Medicine in Houston in a report that appears online today in the journal Nature.

“It’s changed our thinking on autophagy,” said Dr. Jin Wang, assistant professor of immunology at BCM and senior author of the report. During autophagy, the cell forms an envelope or vesicle around components of the cell that need to be degraded and removed. The vesicle then fuses with a cellular component called a lysosome that degrades its contents. The inclusion of components in the cell by autophagy vesicles was generally considered to be nonspecific.

“This is not a random process,” said Wang. “Nix is instructing the cell to get rid of these mitochondria.”

Nix accomplishes this task by disrupting the mitochondrial membrane potential (represented by difference in voltage across the inner membrane of the mitochondria. The interior is negative and the outside positive. The difference generates a force that drives the synthesis of ATP, the cell’s energy molecule).

“We think the finding is not limited to the clearance of mitochondria in red blood cells,” said Wang. “When other cells get old or stressed, their organelles may become damaged and need to be cleared by autophagy for quality control. If the cells lack such quality controls, they might have problems that result in aging, cancer and neurodegenerative diseases.”

“It helps get rid of old or damaged mitochondria,” he said. “It is a way to keep the cell functioning without going through programmed cell death (apoptosis).”

“Such specific regulation of autophagy may also be important for cell types in the muscle, brain and pancreas,” said Dr. Min Chen, assistant professor of immunology at BCM and a corresponding author of this work. “The next step is to identify proteins interacting with Nix for mitochondrial quality control by autophagy”. Other factors may also regulate this process in addition to Nix, said Hector Sandoval, a BCM graduate student who is the first author of this paper.

Source: Baylor College of Medicine

Explore further: ASCB task force on scientific reproducibility calls for action and reform

Related Stories

New degradation proteins show route to cell survival

June 4, 2015

Studies by researchers at Tokyo Institute of Technology and colleagues reveal two proteins that induce degradation of certain cell constituents to help cell survival under nutrient-limiting conditions.

Lace plants explain programmed cell death

July 24, 2012

Programmed cell death (PCD) is a highly regulated process that occurs in all animals and plants as part of normal development and in response to the environment. New research published in BioMed Central's open access journal ...

Protein 'comet tails' propel cell recycling process

June 18, 2015

Several well-known neurodegenerative diseases, such as Lou Gehrig's (ALS), Parkinson's, Alzheimer's, and Huntington's disease, all result in part from a defect in autophagy - one way a cell removes and recycles misfolded ...

Cells target giant protein crystals for degradation

March 12, 2015

Researchers at the RIKEN Brain Science Institute in Japan engineered a fluorescent protein that rapidly assembles into large crystals inside living cells, and showed that cells actively targeted the crystals for degradation. ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.