NC State breakthrough results in super-hard nanocrystalline iron that can take the heat

May 27, 2008

Researchers at North Carolina State University have created a substance far stronger and harder than conventional iron, and which retains these properties under extremely high temperatures – opening the door to a wide variety of potential applications, such as engine components that are exposed to high stress and high temperatures.

Iron that is made up of nanoscale crystals is far stronger and harder than its traditional counterpart, but the benefits of this “nano-iron” have been limited by the fact that its nanocrystalline structure breaks down at relatively modest temperatures. But the NC State researchers have developed an iron-zirconium alloy that retains its nanocrystalline structures at temperatures above 1,300 degrees Celsius – approaching the melting point of iron.

Kris Darling, a Ph.D. student at NC State who led the project to develop the material, explains that the alloy’s ability to retain its nanocrystalline structure under high temperatures will allow for the material to be developed in bulk, because conventional methods of materials manufacture rely on heat and pressure.

In addition, Darling says the ability to work with the material at high temperatures will make it easier to form the alloy into useful shapes – for use as tools or in structural applications, such as engine parts.

The new alloy is also economically viable, since “it costs virtually the same amount to produce the alloy” as it does to create nano-iron, Darling says.

Dr. Carl C. Koch, an NC State professor of materials science engineering who worked on the project, explains that the alloy essentially consists of 1 percent zirconium and 99 percent iron. The zirconium allows the alloy to retain its nanocrystalline structure under high temperatures.

Source: North Carolina State University

Explore further: Recycling permanent magnets in one go

Related Stories

Recycling permanent magnets in one go

September 2, 2015

Electric motors or wind turbines are driven by powerful permanent magnets. The most powerful ones are based on the rare earth elements neodymium and dysprosium. In future, a new process route realized by Fraunhofer researchers ...

Record high pressure squeezes secrets out of osmium

August 24, 2015

An international team of scientists led by the University of Bayreuth and with participation of DESY has created the highest static pressure ever achieved in a lab: Using a special high pressure device, the researchers investigated ...

Molten metal solidifies into a new kind of glass

July 30, 2013

( —When a molten material cools quickly, parts of it may have enough time to grow into orderly crystals. But if the cooling rate is too fast for the entire melt to crystallize, the remaining material ends up in ...

Recommended for you

Touchless displays superseding touchscreens?

October 2, 2015

While touchscreens are practical, touchless displays would be even more so. That's because, despite touchscreens having enabled the smartphone's advance into our lives and being essential for us to be able to use cash dispensers ...

Physicists map the strain in wonder material graphene

September 29, 2015

This week, an international group of scientists is reporting a breakthrough in the effort to characterize the properties of graphene noninvasively while acquiring information about its response to structural strain.


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet May 27, 2008
So how does it compare to various steels?
not rated yet May 27, 2008
venus here we come!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.