Nanotechnology in reverse uses cell to calibrate tools

May 15, 2008

Nanotechnology researchers at UC Davis have shown that they can use a red blood cell to calibrate a sensitive instrument, an atomic force microscope.

"It turns around the rules of nanotechnology, by using biology to calibrate an instrument," said Volkmar Heinrich, assistant professor in the Department of Biomedical Engineering at UC Davis and co-author of the paper with graduate student Chawin Ounkomol.

An atomic force microscope uses a tiny lever that runs over the surface of an object. Small deflections of the tip are read and translated to produce an image of the object's surface. However, accurate calibration of the springiness of the tip is difficult.

Heinrich and Ounkomol used individual red blood cells sucked onto the end of a pipette to push the lever. The lab has previously developed a model that calculates the exact forces needed to squeeze a red blood cell by a certain amount. They could therefore use the red blood cell to very accurately calibrate the springiness of the atomic force microscope cantilever.

Heinrich does not see the technique as a new way to calibrate these instruments, but it does show that the red blood cell can be used as an accurate force transducer, he said, and could be used as a tool to measure forces between individual molecules and cells or between molecules. Those measurements can advance our understanding of cell biology, for example how cancers spread or how immune cells enter tissues to fight infection.

Source: University of California - Davis

Explore further: Targeted drug delivery with these nanoparticles can make medicines more effective

Related Stories

Researchers develop fast test for invasive carp

August 11, 2015

A Case Western Reserve University graduate student turned a research paper into a field test that quickly determines whether an Asian carp invading Lake Erie is sterile or can reproduce.

Recommended for you

Dielectric film has refractive index close to air

October 12, 2015

Researchers from North Carolina State University have developed a dielectric film that has optical and electrical properties similar to air, but is strong enough to be incorporated into electronic and photonic devices - making ...

Have your drug nano-delivered via microbubble

October 12, 2015

"Colloidal delivery system" and "nanoparticle" are probably not terms you find yourself using in day-to-day interactions, but for UC's Yoonjee Park, assistant professor in the College of Engineering and Applied Science biomedical ...

Gold nanomembranes resist bending in new experiment

October 9, 2015

The first direct measurement of resistance to bending in a nanoscale membrane has been made by scientists from the University of Chicago, Peking University, the Weizmann Institute of Science and the Department of Energy's ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.