Light-driven 'molecular brakes' provide stopping power for nanomachines

May 26, 2008

Researchers in Taiwan report development of a new type of "molecular brake" that could provide on-demand stopping power for futuristic nanomachines. The brake, thousands of times smaller than the width of a human hair, is powered by light and is the first capable of working at room temperature, the researchers say. Their study is scheduled for the June 5 issue of ACS' Organic Letters.

In the new study, Jye-Shane Yang and colleagues point out that the ability to control specific motions of small molecules or larger molecular structures is essential for the development of nanomachines. Some of these machines may find use in delivering drugs or performing surgery deep inside the human body.

Although scientists have already built molecular motors, wheels, and gears for powering nanomachines, the development of a practical braking system remains a challenge, the researchers say.

Yang’s group assembled a prototype molecular brake that resembles a tiny four-bladed wheel and contains light-sensitive molecules. The paddle-like structure spins freely when a nanomachine is in motion.

In laboratory studies, the scientists showed that exposing the structure to light changes its shape so that "blades" stop spinning, putting on the brakes. The braking power can be turned off by altering the wavelength of light exposure, they add.

Source: American Chemical Society

Explore further: Study sheds new light on Candida albicans, mysterious fungus that has major health consequences

Related Stories

A brake for spinning molecules

March 13, 2014

Chemical reactions taking place in outer space can now be more easily studied on Earth. An international team of researchers from the University of Aarhus in Denmark and the Max Planck Institute for Nuclear Physics in Heidelberg, ...

Researchers control embryonic stem cells with light

August 26, 2015

UC San Francisco researchers have for the first time developed a method to precisely control embryonic stem cell differentiation with beams of light, enabling them to be transformed into neurons in response to a precise external ...

Researchers slow light to a crawl in liquid crystal matrix

August 13, 2013

(Phys.org) —Light traveling in a vacuum is the Universe's ultimate speed demon, racing along at approximately 300,000 kilometers per second. Now scientists have found an effective new way to put a speed bump in light's ...

Recommended for you

Banana peels can help identify the stages of melanoma

February 8, 2016

Human skin and banana peels have something in common: they produce the same enzyme when attacked. By studying fruit, researchers have come up with an accurate method for diagnosing the stages of this form of skin cancer.

Star formation in the outskirts of galaxies

February 8, 2016

Star formation environments can be roughly grouped into three types, categorized by the density of their gas (or more precisely, the projected "surface" density of the gas, which is easier to determine than the conventional ...

More detailed analysis of how cells react to stress

February 8, 2016

Stress in the body's cells is both the cause and consequence of inflammatory diseases or cancer. The cells react to stress to protect themselves. Researchers at the University of Zurich have now developed a new technique ...

Wolf species have 'howling dialects'

February 8, 2016

Largest quantitative study of howling, and first to use machine learning, defines different howl types and finds that wolves use these types more or less depending on their species, resembling a howling dialect. Researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.