Light-driven 'molecular brakes' provide stopping power for nanomachines

May 26, 2008

Researchers in Taiwan report development of a new type of "molecular brake" that could provide on-demand stopping power for futuristic nanomachines. The brake, thousands of times smaller than the width of a human hair, is powered by light and is the first capable of working at room temperature, the researchers say. Their study is scheduled for the June 5 issue of ACS' Organic Letters.

In the new study, Jye-Shane Yang and colleagues point out that the ability to control specific motions of small molecules or larger molecular structures is essential for the development of nanomachines. Some of these machines may find use in delivering drugs or performing surgery deep inside the human body.

Although scientists have already built molecular motors, wheels, and gears for powering nanomachines, the development of a practical braking system remains a challenge, the researchers say.

Yang’s group assembled a prototype molecular brake that resembles a tiny four-bladed wheel and contains light-sensitive molecules. The paddle-like structure spins freely when a nanomachine is in motion.

In laboratory studies, the scientists showed that exposing the structure to light changes its shape so that "blades" stop spinning, putting on the brakes. The braking power can be turned off by altering the wavelength of light exposure, they add.

Source: American Chemical Society

Explore further: Catching molecular dance moves in slow motion by adding white noise

Related Stories

A brake for spinning molecules

March 13, 2014

Chemical reactions taking place in outer space can now be more easily studied on Earth. An international team of researchers from the University of Aarhus in Denmark and the Max Planck Institute for Nuclear Physics in Heidelberg, ...

Recommended for you

New aspect of atom mimicry for nanotechnology applications

December 2, 2016

In nanotechnology control is key. Control over the arrangements and distances between nanoparticles can allow tailored interaction strengths so that properties can be harnessed in devices such as plasmonic sensors. Now researchers ...

Evaluation of scientific rigor in animal research

December 2, 2016

The "reproducibility crisis" in biomedical research has led to questions about the scientific rigor in animal research, and thus the ethical justification of animal experiments. In research publishing in the Open Access journals ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.