Light-driven 'molecular brakes' provide stopping power for nanomachines

May 26, 2008

Researchers in Taiwan report development of a new type of "molecular brake" that could provide on-demand stopping power for futuristic nanomachines. The brake, thousands of times smaller than the width of a human hair, is powered by light and is the first capable of working at room temperature, the researchers say. Their study is scheduled for the June 5 issue of ACS' Organic Letters.

In the new study, Jye-Shane Yang and colleagues point out that the ability to control specific motions of small molecules or larger molecular structures is essential for the development of nanomachines. Some of these machines may find use in delivering drugs or performing surgery deep inside the human body.

Although scientists have already built molecular motors, wheels, and gears for powering nanomachines, the development of a practical braking system remains a challenge, the researchers say.

Yang’s group assembled a prototype molecular brake that resembles a tiny four-bladed wheel and contains light-sensitive molecules. The paddle-like structure spins freely when a nanomachine is in motion.

In laboratory studies, the scientists showed that exposing the structure to light changes its shape so that "blades" stop spinning, putting on the brakes. The braking power can be turned off by altering the wavelength of light exposure, they add.

Source: American Chemical Society

Explore further: Researchers control embryonic stem cells with light

Related Stories

Researchers control embryonic stem cells with light

August 26, 2015

UC San Francisco researchers have for the first time developed a method to precisely control embryonic stem cell differentiation with beams of light, enabling them to be transformed into neurons in response to a precise external ...

Protein plays unexpected role in embryonic stem cells

June 18, 2015

What if you found out that pieces of your front door were occasionally flying off the door frame to carry out chores around the house? That's the kind of surprise scientists at the Salk Institute experienced with their recent ...

In the realm of eternal ice

April 23, 2015

On 6 November 2010, the light of the star known as NOMAD1 0856-0015072 in the Cetus constellation dimmed. What had happened? A dwarf planet at the edge of the solar system had moved in front of the distant star - its name: ...

Atoms and molecules on the same wavelength

May 13, 2014

(Phys.org) —It may be surprising, but in physics the terrain of atoms and the territory of organic molecules are worlds apart. Therefore, in order to have a molecule communicate optically with atoms, the physicists must ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Secrets of a heat-loving microbe unlocked

September 4, 2015

Scientists studying how a heat-loving microbe transfers its DNA from one generation to the next say it could further our understanding of an extraordinary superbug.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.