Life, but not as we know it?

May 28, 2008

Researchers at The University of Nottingham have taken some important first steps to creating a synthetic copycat of a living cell, a leading science journal reports.

Dr Cameron Alexander and PhD student George Pasparakis in the University's School of Pharmacy have used polymers — long-chain molecules — to construct capsule-like structures that have properties mimicking the surfaces of a real cell.

In work published as a 'VIP paper' in the journal Angewandte Chemie International Edition, they show how in the laboratory they have been able to encourage the capsules to 'talk' to natural bacteria cells and transfer molecular information.

The breakthrough could have a number of potential medical uses. Among them could be the development of new targeted drug delivery systems, where the capsules would be used to carry drug molecules to attack specific diseased cells in the body, while leaving healthy cells intact, thereby reducing the number of side affects that can be associated with treatments for life-threatening illnesses such as cancer.

The technology could also be used as an anti-microbial agent, allowing doctors to destroy harmful bacteria, without attacking other health-promoting bacteria in the body, which could offer a new weapon in the fight against superbugs.

Dr Cameron Alexander said: “These are very primitive steps in the lab, and still a long way from a true synthetic counterpart to a biological cell, but we have demonstrated that we can transfer certain molecules from inside the synthetic capsule to the bacteria when they are in physical contact, which is an exciting development.

“It's extremely early stages, but it's a move closer to the big experiment when we can one day ask whether a natural cell can think a synthetic cell is one of its own.”

The work has been funded through the IDEAS Factory programme run by the Engineering and Physical Sciences Research Council (EPSRC), which aims to promote blue sky, curiosity-led research. It comes ahead of the launch of one of the UK's first research networks into synthetic biology, which is led by Nottingham computer scientists and pharmacists with chemists at Oxford and Glasgow universities. The network, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the EPSRC Life Sciences Interface Programme, involves collaboration across six centres and includes scientific and ethics experts in the emerging field of synthetic biology.

The paper, entitled Sweet-talking Double Hydrophilic Block Copolymer Vesicles, can be accessed online at dx.doi.org/10.1002/anie.200801098

Source: University of Nottingham

Explore further: There may be a complex market living in your gut

Related Stories

There may be a complex market living in your gut

August 1, 2015

Conventional theories used by economists for the past 150 years to explain how societies buy, sell, and trade goods and services may be able to unlock mysteries about the behavior of microbial life on earth, according to ...

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Recommended for you

New biosensors for managing microbial 'workers'

August 4, 2015

Super productive factories of the future could employ fleets of genetically engineered bacterial cells, such as common E. coli, to produce valuable chemical commodities in an environmentally friendly way. By leveraging their ...

Will SETI's unprecedented new program finally find E.T.?

August 4, 2015

Stephen Hawking, Frank Drake and dozens of journalists gathered at the Royal Society in London last week to hear astronomers announce a ground-breaking new project to search for intelligent extraterrestrial life called "Breakthrough ...

Fast times and hot spots in plasmonic nanostructures

August 4, 2015

The ability to control the time-resolved optical responses of hybrid plasmonic nanostructures was demonstrated by a team led by scientists in the Nanophotonics Group at the Center for Nanoscale Materials including collaborators ...

A novel toxin for M. tuberculosis

August 4, 2015

Despite 132 years of study, no toxin had ever been found for the deadly pathogen Mycobacterium tuberculosis, which infects 9 million people a year and kills more than 1 million.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.