Researchers develop human stem cell line containing sickle cell anemia mutation

May 29, 2008

Researchers at Johns Hopkins have established a human cell-based system for studying sickle cell anemia by reprogramming somatic cells to an embryonic stem cell like state. Researchers at Johns Hopkins have established a human cell-based system for studying sickle cell anemia by reprogramming somatic cells to an embryonic stem cell like state. Publishing online in Stem Cells on May 29, the team describes a faster and more efficient method of reprogramming cells that might speed the development of stem cell therapies.

“We hope our new cell lines can open the doors for researchers who study diseases like sickle cell anemia that are limited by the lack of good experimental models,” says Linzhao Cheng, Ph.D., an associate professor of gynecology and obstetrics, medicine and oncology and a member of the Johns Hopkins Institute for Cell Engineering.

The research team first sought to improve previously established methods for reprogramming of adult cells into so-called induced pluripotent stem (iPS) cells, which look and behave similarly to embryonic stem cells and can differentiate into many different cell types. After testing several different genes, they were able to improve reprogramming efficiency by adding a viral protein known as SV40 large T antigen.

Using both fetal and adult human skin cells, the researchers introduced the four genes previously reported sufficient for cell reprogramming and compared the efficiency of reprogramming in the presence or absence of large T antigen. Without large T, cells form embryonic stem cell-like clusters in three to four weeks. With large T, the cells started looking like embryonic stem cells in just 12 to 14 days.

“Not only did T speed up reprogramming, we also found that it increases the total number of reprogrammed cells, which is great because often in reprogramming, not all cells go all the way,” says Cheng, who explains that rigorous follow-up tests are required to determine if the reprogrammed cells really behave like pluripotent embryonic stem cells. “Many of them look right but they’re probably just half cooked-like a boiled egg, you just can’t tell the difference by looking at the outside,” he says.

Having established a faster, more efficient method, the team then reprogrammed human cells that contain the mutation associated with sickle cell anemia. Embryonic stem cell-like clusters were visible 14 days after they initiated reprogramming and from these clusters the researchers established three different cell lines that both look and behave like human embryonic stem cells.

“One challenge to studying blood diseases like sickle cell anemia is that blood stem cells can’t be kept alive for very long in the lab, so researchers need to keep returning to patients for more cells to study,” says Cheng. “Having these new cell lines available might enable some bigger projects, like screening for potential drugs.”

Source: Johns Hopkins Medical Institutions

Explore further: Karolinska University to investigate stem-cell scientist

Related Stories

Karolinska University to investigate stem-cell scientist

February 5, 2016

Sweden's Karolinska University says it is commissioning an external investigation into stem-cell scientist Paolo Macchiarini, who was cleared last year of misconduct charges related to his creation of wind pipes made from ...

How roots grow

February 4, 2016

In contrast to animals, plants form new organs throughout their entire life, i.e. roots, branches, flowers and fruits. Researchers in Frankfurt wanted to know to what extent plants follow a pre-determined plan in the course ...

Recommended for you

Banana peels can help identify the stages of melanoma

February 8, 2016

Human skin and banana peels have something in common: they produce the same enzyme when attacked. By studying fruit, researchers have come up with an accurate method for diagnosing the stages of this form of skin cancer.

Star formation in the outskirts of galaxies

February 8, 2016

Star formation environments can be roughly grouped into three types, categorized by the density of their gas (or more precisely, the projected "surface" density of the gas, which is easier to determine than the conventional ...

More detailed analysis of how cells react to stress

February 8, 2016

Stress in the body's cells is both the cause and consequence of inflammatory diseases or cancer. The cells react to stress to protect themselves. Researchers at the University of Zurich have now developed a new technique ...

Wolf species have 'howling dialects'

February 8, 2016

Largest quantitative study of howling, and first to use machine learning, defines different howl types and finds that wolves use these types more or less depending on their species, resembling a howling dialect. Researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.