Searching the heavens -- GLAST

May 01, 2008

A new space mission, due to launch this month, is going to shed light on some of the most extreme astrophysical processes in nature - including pulsars, remnants of supernovae, and supermassive black holes. It could even help us comprehend the origin and distribution of dark matter, write three scientists currently preparing for the GLAST mission from NASA’s Goddard Space Flight Centre in Greenbelt, Maryland, USA, in this month’s Physics World.

The Gamma-Ray Large Area Space Telescope (GLAST), to be launched on 16 May 2008, is a four-tonne observatory packed with state-of-the-art particle detectors that will study the gamma-ray sky in unprecedented detail.

Gamma rays are a form of electromagnetic radiation with much higher frequency and energy than visible light, UV light or even X-rays. Having such high energy, gamma rays are hard to collect and focus in the way that a conventional telescope does with visible light. Gamma rays are therefore the most difficult form of electromagnetic radiation to track in space.

Whereas visible light reveals thousands of stars and individual planets moving slowly across the sky, studying the skies at gamma-ray frequencies reveals a much weirder picture of space.

Gamma rays are not produced by hot, glowing objects, but from collisions between charged, very rapidly moving, particles and matter or light. The high frequency photons that are emitted from these collisions provide a glimpse of the most extreme astrophysical processes known.

Black holes, for example, accelerate matter to produce extreme energies in active galaxies. The gamma rays emitted in these scenarios have the equivalent energy to that of all the stars in an entire galaxy over all wavelengths.

Until now, however, existing ground-based gamma-ray detectors have not been sophisticated enough to measure these emissions in any detail over long periods. The astrophysicists cite looking for signatures of as-yet-unknown fundamental physical processes as a key reason for embarking on this project.

Julie McEnery, Steve Ritz and Neil Gehrels of NASA’s Goddard Space Centre, write, “We expect GLAST to have a large impact on many areas of astrophysics but what is most exciting are the surprises: with any luck, the greatest GLAST science has not even been thought of yet.”

Source: Institute of Physics

Explore further: How bad can solar storms get?

Related Stories

How bad can solar storms get?

May 22, 2015

Our sun regularly pelts the Earth with all kinds of radiation and charged particles. How bad can these solar storms get?

SLAC gears up for dark matter hunt with LUX-ZEPLIN

May 21, 2015

Researchers have come a step closer to building one of the world's best dark matter detectors: The U.S. Department of Energy (DOE) recently signed off on the conceptual design of the proposed LUX-ZEPLIN (LZ) ...

Hubble observes one-of-a-kind star nicknamed 'Nasty'

May 21, 2015

Astronomers using NASA's Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is ...

Engineering mechanical parts for space activity

May 20, 2015

For more than four decades, an unremarkable building in an industrial estate on the edge of Warrington, UK, has played a crucial role in the success of most European space missions with moving parts – which ...

Using a sounding rocket to help calibrate NASA's SDO

May 19, 2015

Watching the sun is dangerous work for a telescope. Solar instruments in space naturally degrade over time, bombarded by a constant stream of solar particles that can cause a film of material to adhere to ...

Recommended for you

How bad can solar storms get?

May 22, 2015

Our sun regularly pelts the Earth with all kinds of radiation and charged particles. How bad can these solar storms get?

Mars rover's ChemCam instrument gets sharper vision

May 22, 2015

NASA's Mars Curiosity Rover's "ChemCam" instrument just got a major capability fix, as Los Alamos National Laboratory scientists uploaded a software repair for the auto-focus system on the instrument.

GOES-R satellite begins environmental testing

May 21, 2015

The GOES-R satellite, slated to launch in 2016, is ready for environmental testing. Environmental testing simulates the harsh conditions of launch and the space environment once the satellite is in orbit. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.