Glypican-3 gene function in regulating body size helps inform novel cancer treatments

May 12, 2008

In a leading study that has implications for the development of novel therapies for a number of breast, lung and ovarian cancers that have lost the expression of a gene called glypican-3 (GPC3), Sunnybrook researchers have discovered how the loss of the GPC3 gene induces overgrowth through certain growth factors such as Sonic Hedgehog which stimulate cancer growth.

Published today in Developmental Cell, the study examines the molecular mechanism by which lack of functional GPC3 causes overgrowth in the Simpson-Golabi-Behmel syndrome (SGBS), a rare disorder that predisposes to cancers.

“This vital new finding at the molecular level opens doors for the development of novel treatments to inhibit overgrowth activity to benefit SGBS patients and the many breast, lung and ovarian cancer patients linked to loss of GPC3,” says Dr. Jorge Filmus, senior scientist, Division of Molecular and Cellular Biology, Sunnybrook Research Institute, and the study’s lead investigator. Early clinical trials presented at the last annual meeting of the American Association for Cancer Research in which cancer patients are being treated using Hedgehog-inhibitor drugs show promise.

GPC3 or glypican-3 is one of six genes of the glypican family. Glypicans are expressed predominantly during development in a stage and tissue specific manner suggesting they play a role in cell growth and in establishing the shape of tissues and organs.

Source: Sunnybrook Health Sciences Centre

Related Stories

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.