What's the difference between a human and a fruit fly?

May 12, 2008

Fruit flies are dramatically different from humans not in their number of genes, but in the number of protein interactions in their bodies, according to scientists who have developed a new way of estimating the total number of interactions between proteins in any organism.

The new research, published today in the Proceedings of the National Academy of Sciences journal, shows that humans have approximately 10 times more protein interactions than the simple fruit fly, and 20 times as many as simple, single-cell yeast organisms.

This contradicts comparisons between the numbers of genes in different organisms, which yield surprising results: humans have approximately 24,000 genes, but fruit flies are not far behind, with approximately 14,000 genes.

The interaction between different proteins is behind all physiological systems in the human body. When the body digests food, responds to a change in temperature, or fights off an infection, numerous combinations of protein interactions are involved. However, until now it has been impossible to calculate the numbers of interactions that take place within different organisms.

Professor Michael Stumpf from Imperial College London’s Department of Life Sciences, one of the paper’s authors, explains the significance of the new study, saying:

“Scientists have believed for some time that the complexity of an organism’s protein interactions determine its biological complexity, but until now it’s been impossible to put a number on the size of one organism’s interaction network compared to another, as relatively little work has been done to identify and map these interactions.”

Scientists refer to the total number of protein interactions in the body as the “human interactome”, likening it to the human genome, which is most commonly associated with giving us our human traits.

Professor Stumpf adds: “Understanding the human genome definitely does not go far enough to explain what makes us different from more simple creatures. Our study indicates that protein interactions could hold one of the keys to unraveling how one organism is differentiated from another.”

The researchers devised a mathematical tool which allows them to predict the total size of an organism’s protein interaction network based on currently available, incomplete data.

The researchers’ next steps will be to make much more detailed predictions based on careful comparisons between species. This will be crucial in order to understand, for example, why some fungal species, such as baker’s yeast are important in the production of bread and beer, while other closely related species cause fungal infections with high mortality rates.

Source: Imperial College London

Explore further: Developing a gel that mimics human breast for cancer research to reduce the need for animal models

Related Stories

A new single-molecule tool to observe enzymes at work

September 28, 2015

A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins. ...

Using flies to understand how pregnancy drives food cravings

September 24, 2015

Researchers at the Champalimaud Centre for the Unknown in Lisbon discovered that fruit flies share the human craving for salt during pregnancy and shed light on how the nervous system controls this behaviour. The study is ...

Observing nano-bio interactions in real time

September 15, 2015

Researchers at the National University of Singapore (NUS) have developed a technique to observe, in real time, how individual blood components interact and modify advanced nanoparticle therapeutics. The method, developed ...

Recommended for you

Horn of Africa drying ever faster as climate warms

October 9, 2015

The Horn of Africa has become increasingly arid in sync with the global and regional warming of the last century and at a rate unprecedented in the last 2,000 years, according to new research led by a University of Arizona ...

Scientists paint quantum electronics with beams of light

October 9, 2015

A team of scientists from the University of Chicago and the Pennsylvania State University have accidentally discovered a new way of using light to draw and erase quantum-mechanical circuits in a unique class of materials ...

What are white holes?

October 9, 2015

Black holes are created when stars die catastrophically in a supernova. So what in the universe is a white hole?


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.