Boosting 'mussel' power: New technique for making key marine mussel protein

May 5, 2008
Mussel Proteins
By adding a certain gene to genetically engineered bacteria, researchers have increased production of a sticky protein from mussels that could lead to better, cheaper antibacterial coatings. Credit: Courtesy of Hyung Joon Cha

Researchers in Korea report development of a way to double production of a sticky protein from marine mussels destined for use as an antibacterial coating to prevent life-threatening infections in medical implants. The coating, produced by genetically-engineered bacteria, could cut medical costs and improve implant safety, the researchers say. Their study is scheduled for the June 6 issue of ACS’ Biotechnology Progress.

Bacterial infection of medical implants, such as cardiac stents and dialysis tubing, threatens thousands of people each year and is a major medical challenge due to the emergence of antibiotic-resistant bacteria. Several research groups are working on long-lasting, germ-fighting coatings from mussel proteins, but production of these coatings is inefficient and expensive.

Hyung Joon Cha and colleagues previously developed a way to use genetically engineered E. coli bacteria to produce mussel adhesive proteins. Now they report adding a new gene for producing Vitreoscilla hemoglobin (VHb), a substance that boosts production of proteins under low-oxygen conditions. Adding the VHb gene to the engineered E. coli doubled the amount of mussel proteins produced, which could lead to more cost-effective coatings, the researchers say.

Source: American Chemical Society

Explore further: New mussel-inspired surgical protein glue: Close wounds, open medical possibilities

Related Stories

New research examines shellfish consumption

November 7, 2014

A pioneering Cornish research partnership is providing invaluable information to the UK's shellfish industry by improving understanding of what seafood people choose to eat and why.

The ultimate biofilament: Hagfish slime

September 25, 2014

(Phys.org) —Perhaps the worst fate to be had in the sea is to be slimed by the hagfish. The proteinaceous goo they secrete has gotten many a hagfish out of bind by gumming up the gills and suffocating a would be attacker. ...

The fix is in: Team studies self-healing polymers

August 7, 2014

(Phys.org) —A surfboard that seals its own cracks without having to cure in the sun for days. Underwater structures that can be fixed with less work and downtime. Joints that are almost instantly stronger after surgery. ...

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.