Boosting 'mussel' power: New technique for making key marine mussel protein

May 05, 2008
Mussel Proteins
By adding a certain gene to genetically engineered bacteria, researchers have increased production of a sticky protein from mussels that could lead to better, cheaper antibacterial coatings. Credit: Courtesy of Hyung Joon Cha

Researchers in Korea report development of a way to double production of a sticky protein from marine mussels destined for use as an antibacterial coating to prevent life-threatening infections in medical implants. The coating, produced by genetically-engineered bacteria, could cut medical costs and improve implant safety, the researchers say. Their study is scheduled for the June 6 issue of ACS’ Biotechnology Progress.

Bacterial infection of medical implants, such as cardiac stents and dialysis tubing, threatens thousands of people each year and is a major medical challenge due to the emergence of antibiotic-resistant bacteria. Several research groups are working on long-lasting, germ-fighting coatings from mussel proteins, but production of these coatings is inefficient and expensive.

Hyung Joon Cha and colleagues previously developed a way to use genetically engineered E. coli bacteria to produce mussel adhesive proteins. Now they report adding a new gene for producing Vitreoscilla hemoglobin (VHb), a substance that boosts production of proteins under low-oxygen conditions. Adding the VHb gene to the engineered E. coli doubled the amount of mussel proteins produced, which could lead to more cost-effective coatings, the researchers say.

Source: American Chemical Society

Explore further: Fishing ban rescues Robben Island penguin chicks

Related Stories

New research examines shellfish consumption

Nov 07, 2014

A pioneering Cornish research partnership is providing invaluable information to the UK's shellfish industry by improving understanding of what seafood people choose to eat and why.

The ultimate biofilament: Hagfish slime

Sep 25, 2014

(Phys.org) —Perhaps the worst fate to be had in the sea is to be slimed by the hagfish. The proteinaceous goo they secrete has gotten many a hagfish out of bind by gumming up the gills and suffocating a ...

The fix is in: Team studies self-healing polymers

Aug 07, 2014

(Phys.org) —A surfboard that seals its own cracks without having to cure in the sun for days. Underwater structures that can be fixed with less work and downtime. Joints that are almost instantly stronger ...

Recommended for you

Fishing ban rescues Robben Island penguin chicks

4 minutes ago

Survival of endangered African penguin chicks increased by 18% following a trial three-year fishery closure around Robben Island in South Africa, a new study from the University of Exeter has found.

Unlocking lignin for sustainable biofuel

29 minutes ago

Turning trees, grass, and other biomass into fuel for automobiles and airplanes is a costly and complex process. Biofuel researchers are working to change that, envisioning a future where cellulosic ethanol, ...

Scientists develop free, online genetic research tool

1 hour ago

Technology rapidly is advancing the study of genetics and the search for causes of major diseases. Analysis of genomic sequences that once took days or months now can be performed in a matter of hours. Yet, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.