Bees disease -- 1 step closer to finding a cure

May 2, 2008

Scientists in Germany have discovered a new mechanism of infection for the most fatal bee disease. American Foulbrood (AFB) is the only infectious disease which can kill entire colonies of bees. Every year, this notifiable disease is causing considerable economic loss to beekeepers all over the world. The only control measure is to destroy the infected hive.

The mechanism of infection (pathogenic mechanism) was originally thought to be through the growth of a bacterium called Paenibacillus larvae in the organ cavity of honey bee larvae. The accepted view was that the bacteria germinate preferentially at either end of the gut of honey bee larvae then make holes in the gut wall and enter the larval organ cavity, the presumed primary place of bacterial proliferation.

In a paper published in Environmental Microbiology, Professor Elke Genersch and colleagues in Berlin explain that they have discovered that these bacteria cause infection in a completely different way. They colonize the larval midgut, do most of their multiplying in the mid-gut - living from the food ingested by the larvae - until eventually the honey bee larvae gut contains nothing but these disease-causing (pathogenic) bacteria. It isn’t until then that the bacteria ‘burst’ out of the gut into the organ cavity thereby killing the larvae. These findings are a major breakthrough in honeybee pathology.

“Now that we fully understand the way in which this disease works, we can start to look at ways of preventing the spread of infection” said Professor Genersch.

Honeybees are important pollinators of crops, fruit and wild flowers. Therefore, they are indispensable for a sustainable and profitable agriculture but also for the maintenance of the non-agricultural ecosystem. Honeybees are attacked by numerous pathogens including viruses, bacteria, fungi and parasites. For most, if not all of these diseases, the molecular pathogenesis is poorly understood hampering the development of new ideas about how to prevent and combat honeybee diseases.

Professor Genersch added: “Molecular understanding of pathogen-host interactions is vital for the development of effective measures against infectious diseases. Therefore, in the long run, our findings will help to save large numbers of bees all over the world.”

Source: Wiley

Explore further: What's in your landscape? Plants can alter West Nile virus risk

Related Stories

Newly named bacteria help honey bee larvae thrive

May 7, 2015

Honey bees are under constant pressure from a whole host of stresses—diseases, poor nutrition, sublethal effects of pesticides, and many others. While researchers have been aware for a number of years of a community of ...

Recommended for you

Shedding light on millipede evolution

August 2, 2015

As an National Science Foundation (NSF)-funded entomologist, Virginia Tech's Paul Marek has to spend much of his time in the field, hunting for rare and scientifically significant species. He's provided NSF with an inside ...

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Sophos
not rated yet May 02, 2008
Great kill all the bees before they can
develop a natural immunity
Glis
not rated yet May 02, 2008
I thought the bees were dying from eating GMO crops that mess their digestive system all up?
Soylent
not rated yet May 03, 2008
I thought the bees were dying from eating GMO crops that mess their digestive system all up?


You've been lied to.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.