Avoiding wind tunnels, computer simulations pave way for hypersonic flight

April 10, 2008

A two-hour plane flight between Tokyo and New York sounds like science fiction, but methods developed by Princeton engineers to describe turbulence at extreme conditions may aid the design of aircraft with that kind of speed, 15 times faster than sound.

Bypassing the need for prohibitively difficult wind tunnel tests, Pino Martin, an assistant professor of mechanical and aerospace engineering, and her research group created powerful computer simulations that show how air behaves at speeds greater than 5,000 miles per hour and temperatures of nearly 14,000 degrees Fahrenheit. Understanding air flow under these conditions is critical for creating a new class of jet engines that are far more powerful than anything available today.

"Detailed wind tunnel experiments in these hostile regimes are extremely challenging, if not impossible," Martin said. Her highly refined computer simulations allow other engineers to test concepts and develop new theories of turbulence before building actual models.

Conventional jet engines rely on compressors to force air into the combustor, where the oxygen is used to burn fuel. The hot air generated is then forced out the back of the plane to generate forward thrust. The success of hypersonic flight hinges on the development of safe and efficient engines known as scramjets. Rather than using a compressor to push oxygen stored on board into the combustor, scramjets rely on the jet's extremely fast forward motion to force the surrounding air into the engine, burn fuel and generate thrust.

While NASA and the U.S. Air Force have used experimental scramjets to reach speeds up to 9.6 times the speed of sound -- nearly 7,000 miles per hour -- the large-scale and commercial deployment of the vehicles will require a far greater understanding of the turbulence and shock waves that aircraft encounter as they hurdle through the atmosphere. This is of crucial importance to scramjets because a loss of smooth air flow could cause them to suddenly lose thrust.

A major success of the methods developed by Martin and her research group is their ability to recognize shock waves -- extremely small, powerful and abrupt disturbances in the flow of a fluid -- and distinguish them from normal turbulence. Existing simulations are often unable to make that distinction, which greatly diminishes their predictive capabilities. Martin's methods allow researchers to examine the details of hypersonic air flow at small and large scales, revealing features ranging in length from micrometers to meters and occurring at frequencies from 1,000 to 1,000,000 times per second. With this ability, the simulations recognize the slightest distinction between normal fluctuations and shock waves, making them extremely powerful tools for explaining a broad range of turbulent flow conditions.

"Pino Martin is conducting excellent research in direct numerical simulation of fundamental turbulent flows that accurately resolves the smallest physical scales," said Kevin Bowcutt, the chief scientist of hypersonics for Boeing. "The ultimate realization of manned, scramjet-powered hypersonic flight, and therefore routine and affordable rapid global transport and access to space, depends critically upon the successful development of predictive computational fluid dynamics. In turn, the realization of predictive computational fluid dynamics depends critically upon Professor Martin's turbulent flow simulation work."

Martin credits her team's success to their collaboration with Alexander Smits, chair and professor of Princeton's mechanical and aerospace engineering department. Smits, a leading experimentalist in the field of fluid dynamics, provides real-world turbulence data in a range of conditions to help guide the development of accurate simulation methods.

"These simulations will lead to a better understanding of the physics involved, which will allow us to develop better laws and models," Martin said. "This new understanding may lead to novel design concepts that enable hypersonic travel as well as safe and affordable access to space."

The ability to efficiently recognize and track patterns and events, such as shock waves, in scientific data may have broader applications in a variety of scientific fields. For example, similar methods might be used to track weather fronts, the dispersion of biological organisms or mutations in genetic information.

Source: Princeton University

Explore further: High-resolution modeling improves understanding of dust flow from Africa to Arabia

Related Stories

Streamlining accelerated computing for industry

August 23, 2016

Scientists and engineers striving to create the next machine-age marvel—whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet engine—depend on reliable analysis and feedback to improve ...

An optical method of sorting nanoparticles by size

August 18, 2016

NIST scientists have devised and modeled a unique optical method of sorting microscopic and nanoscopic particles by size, with a resolution as fine as 1 nanometer (nm) for particles of similar composition.

Did cirrus clouds help keep early Mars warm and wet?

August 16, 2016

Many features on the surface of Mars hint at the presence of liquid water in the past. These range from the Valles Marineris, a 4,000 km long and 7 km deep system of canyons, to the tiny hematite spherules called "blueberries". ...

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

wolfkeeper
2.5 / 5 (2) Apr 10, 2008
The problem with this stuff is that if Concorde could only *just* make it across the atlantic, what chance is there of something going at hypersonic speeds making any long distances?

Ignoring the engine efficiency (which per mile is probably going to be lower), the L/D ratio at hypersonic speeds is inevitably reduced over that that Concorde could achieve, and hence range suffers. So it's unlikely that these aircraft can make such long distances.
Modernmystic
3 / 5 (3) Apr 11, 2008
I believe their thinking is that some of these planes will be flying very high, perhaps even suborbital. That could make a big difference on range and efficiency issues.
COCO
4 / 5 (1) Apr 11, 2008
the Auroa does this now
gopher65
3 / 5 (2) Apr 12, 2008
These are also scramjets. Normal supersonic aircraft have to carry large amounts of oxygen (either in separate tanks or fuel with a high oxygen content). At those speeds they simply can't get enough oxygen out of the air to burn normal fuel. Scramjets by-pass that problem by funnelling large amounts of air through their combustion chamber, allowing the aircraft to carry far less fuel than it otherwise would need to. But this only works at... something like mach 4 (or is it 7 ?).

Since they carry less fuel (and less fuel to carry that fuel, and less fuel to carry the fuel to carry that fuel, and less... ok, you get the point:P. This is why we rarely build huge rockets. You need more fuel just to carry your fuel. It quickly becomes highly inefficient), they have greatly increased ranges over traditional supersonic aircraft.
nilbud
1 / 5 (3) Apr 14, 2008
Supersonic aircraft do not have to carry tanks of oxygen except for crew purposes. It's amazing that you confuse rocketry with all supersonic flight.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.