Tomato pathogen genome may offer clues about bacterial evolution

April 14, 2008

The availability of new genome sequencing technology has prompted a Virginia Tech plant scientist to test an intriguing hypothesis about how agriculture’s early beginnings may have impacted the evolution of plant pathogens.

Boris Vinatzer, assistant professor of plant pathology, physiology, and weed science in the College of Agriculture and Life Sciences, has received a $1 million, five-year Faculty Early Career Development (CAREER) award from the National Science Foundation (NSF) to investigate the pathogen that causes bacterial speck disease of tomatoes and to develop a new undergraduate course in microbial genomics.

“Little is known about how plant pathogens, which were adapted to natural mixed-plant communities in pre-agriculture times, evolved into today’s highly aggressive pathogens of crops cultivated in monoculture,” Vinatzer said. “To fill this void, this project aims at identifying the molecular evolutionary mechanisms that allow pathogens to specialize to specific plant species and to become more aggressive.”

In 2007, Vinatzer sequenced the genome of a Pseudomonas syringae pv. tomato strain using technology from the Virginia Bioinformatics Institute (VBI) at Virginia Tech and funding from the university’s Institute for Biomedical and Public Health Sciences. The tomato pathogen was the first genome to be sequenced on the new Roche GS-FLX™ machine, which VBI had just purchased with Virginia’s Commonwealth Research Initiative funding.

“That sequence, in addition to other preliminary data, allowed me to develop a hypothesis on the evolution of plant pathogenic bacteria since the beginning of agriculture,” Vinatzer said. “The hypothesis is that plant pathogenic bacteria evolved from relatively weak pathogens that caused disease in many plants to specialized highly virulent pathogens of single crops after entire fields of the same plant species became available to them in agricultural fields. Importantly, understanding the mechanisms pathogens used to adapt to crops in the past will help us predict how they might change again in the future and allow us to breed or engineer crops for long-lasting disease resistance.”

Vinatzer’s approach combines comparative evolutionary genomics, population genetics, and microbial genetics and leverages the latest advances in the biological sciences and the computer sciences. He is collaborating with João Setubal, associate professor and deputy director at VBI.

Source: Virginia Tech

Explore further: Flexible treatment processes may create water supply that is affordable and benefits crops

Related Stories

Predicting plant-soil feedbacks from plant traits

August 26, 2016

In nature, plants cannot grow without soil biota like fungi and bacteria. Successful plants are able to harness positive, growth-promoting soil organisms, while avoiding the negative effects of others. Which plant traits ...

Plant disease clinic identifies new case of oak wilt

August 22, 2016

Earlier this year, the Cornell University Plant Disease Diagnostic Clinic (CU-PDDC) used a new rapid test they developed to identify a small number of oak trees with oak wilt disease on Long Island, in the town on Central ...

Disregarded plant molecule actually a treasure

August 11, 2016

The best natural chemists out there are not scientists—they're plants. Plants have continued to evolve a rich palette of small natural chemicals and receptors since they began to inhabit land roughly 450 million years ago.

Recommended for you

Smarter brains are blood-thirsty brains

August 30, 2016

A University of Adelaide-led project has overturned the theory that the evolution of human intelligence was simply related to the size of the brain—but rather linked more closely to the supply of blood to the brain.

Theorists solve a long-standing fundamental problem

August 30, 2016

Trying to understand a system of atoms is like herding gnats - the individual atoms are never at rest and are constantly moving and interacting. When it comes to trying to model the properties and behavior of these kinds ...

Reconstructing the sixth century plague from a victim

August 30, 2016

Before the infamous Black Death, the first great plague epidemic was the Justinian plague, which, over the course of two centuries, wiped out up to an estimated 50 million (15 percent) of the world's population throughout ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.