Researchers create the first thermal nanomotor in the world

April 15, 2008

Researchers from the UAB Research Park have created the first nanomotor that is propelled by changes in temperature. A carbon nanotube is capable of transporting cargo and rotating like a conventional motor, but is a million times smaller than the head of a needle. This research opens the door to the creation of new nanometric devices designed to carry out mechanical tasks and which could be applied to the fields of biomedicine or new materials.

The "nanotransporter" consists of a carbon nanotube - a cylindrical molecule formed by carbon atoms - covered with a shorter concentric nanotube which can move back and forth or act as a rotor. A metal cargo can be added to the shorter mobile tube, which could then transport this cargo from one end to the other of the longer nanotube or rotate around its axis.

Researchers are able to control these movements by applying different temperatures at the two ends of the long nanotube. The shorter tube thus moves from the warmer to the colder area and is similar to how air moves around a heater. This is the first time a nanoscale motor is created that can use changes in temperature to generate and control movements.

The movements along the longer tube can be controlled with a precision of less than the diameter of an atom. This ability to control objects at nanometre scale can be extremely useful for future applications in nanotechnology, e.g. in designing nanoelectromechanical systems with great technological potential in the fields in biomedicine and new materials.

The research has been published in the online journal Science Express.

Source: Universitat Autonoma de Barcelona

Explore further: Space Tourism to Rocket in 21st Century, Researchers Predict

Related Stories

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.