Scientists determine drug target for the most potent botulinum neurotoxin

Apr 29, 2008

Botulinum neurotoxin – responsible for the deadly food poisoning disease botulism and for the beneficial effects of smoothing out facial wrinkles – can also be used as a dreaded biological weapon. When ingested or inhaled, less than a billionth of an ounce can cause muscle paralysis and eventual death. Although experimental vaccines administered prior to exposure can inhibit the destructive action of this neurotoxin – the most deadly protein known to humans – no effective pharmacological treatment exists.

Now, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) have taken the first step toward designing an effective antidote to the most potent form of the toxin. They have found that they can trick the toxin to bypass its normal binding protein, thereby blocking its deadly action. The results of their research are reported in the April 22, 2008 online issue of the Journal of Biological Chemistry.

“We have found a highly efficient inhibitor of botulinum neurotoxin type A – the most potent of seven neurotoxins produced by the bacterium Clostridium botulinum. This finding can lead to a very effective drug to stop the devastating effects of the toxin,” said Brookhaven Lab biologist Subramanyam Swaminathan, the study’s co-principal investigator. “We intend to do further research to tailor the inhibitor for the best results.”

“We are excited about the success of this work and the prospects it holds for future drug development,” said USAMRIID principal investigator S. Ashraf Ahmed, who initiated the structure-based inhibitor design as part of the Institute’s bio-defense research program.

To cause its deadly effects, the botulinum neurotoxin first binds to a nerve cell membrane, which curves inward, incorporating the toxin into a vesicle that drifts inside the cell. The toxin eventually travels from the vesicle to the cytosol, the internal fluid of the cell. The toxin then cleaves specific proteins in the cytosol, thereby blocking the release of neurotransmitters – chemicals nerve cells use to communicate with one another and with muscles. Blockage of this communication paralyzes muscles – including those that enable breathing.

To block the toxin’s action, the researchers designed four “decoy” protein fragments that mimic the structure of the protein to which the toxin ordinarily binds. The toxin then attaches itself to the decoy fragments instead of to the cell’s protein. This re-routing of the toxin allows neurotransmitters to keep functioning, thus stopping the toxin’s pathological effects.

The scientists used x-ray techniques at Brookhaven’s National Synchrotron Light Source (NSLS) to see how the toxin binds to the protein inhibitors. They found that all four decoy proteins are efficient at inhibiting the toxin’s binding to the cell’s protein, but one of them in particular is by far the best of any known inhibitors. The scientists’ next step in this process is to transform the most effective of the four protein fragments into a drug-like molecule before clinical testing is done.

“This study represents an impressive collaboration in identifying potential inhibitors of the toxin for therapeutic use,” said Colonel George W. Korch, Jr., USAMRIID’s commander. “It builds upon the successes we have realized in developing effective next-generation vaccines to protect our citizens against the toxin’s deadly effects prior to exposure.”

The scientists did not work with intact Clostridium botulinum bacteria. Instead, they produced a functional fragment of the neurotoxin protein, which is not toxic. The research is performed in strict compliance with Brookhaven’s Institutional Biosafety Committee regulations according to standards set by the U.S. Centers for Disease Control and Prevention. Only authorized scientists have access to the laboratory.

Source: Brookhaven National Laboratory

Explore further: Metal encapsulation optimizes chemical reactions

Related Stories

Coral snake venom reveals a unique route to lethality

Feb 09, 2015

For more than a decade, a vial of rare snake venom refused to give up its secret formula for lethality; its toxins had no effect on the proteins that most venoms target. Finally, an international team of ...

Team proposes new model for snake venom evolution

Dec 08, 2014

Technology that can map out the genes at work in a snake or lizard's mouth has, in many cases, changed the way scientists define an animal as venomous. If oral glands show expression of some of the 20 gene ...

Recommended for you

Metal encapsulation optimizes chemical reactions

25 minutes ago

The chemical industry consumes millions of tons of packing materials as catalytic sup- port media or adsorbents in fixed-bed reactors and heat storage systems. Fraunhofer researchers have developed a means of encapsulating ...

Fuel and chemicals from steel plant exhaust gases

1 hour ago

Carbon monoxide-rich exhaust gases from steel plants are only being reclaimed to a minor extent as power or heat. Fraunhofer researchers have developed a new recycling process for this materially unused carbon resource: They ...

Self-assembly of molecular Archimedean polyhedra

1 hour ago

Chemists truly went back to the drawing board to develop new X-shaped organic building blocks that can be linked together by metal ions to form an Archimedean cuboctahedron. In the journal Angewandte Chemie, the sc ...

Scientists unravel elusive structure of HIV protein

2 hours ago

HIV, or human immunodeficiency virus, is the retrovirus that leads to acquired immunodeficiency syndrome or AIDS. Globally, about 35 million people are living with HIV, which constantly adapts and mutates ...

New method can make cheaper solar energy storage

4 hours ago

Storing solar energy as hydrogen is a promising way for developing comprehensive renewable energy systems. To accomplish this, traditional solar panels can be used to generate an electrical current that splits ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

CactusCritter
not rated yet Apr 30, 2008
Another article like this one might make PhysOrg a good reference for terrorists.

Be a little careful in how often you treat deadly toxins like this.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.