Primary driver of stomach cancer development identified

April 23, 2008

In a discovery that could lead to the development of new treatments for gastric cancer, scientists at the Melbourne Branch of the international Ludwig Institute for Cancer Research (LICR) have discovered what appears to be the primary driver of tumor development in the stomach. Results published today on-line in the Journal of Clinical Investigation show that inhibiting the signaling cascade initiated by the IL-11 protein prevented the development of inflammation, hyperplasia (an abnormal increase in the number of cells) and tumor formation in pre-clinical models of gastric cancer.

Gastric cancer is the second most common cause of cancer-related deaths around the world, and has been shown previously to be correlated with chronic inflammation. Persistent activation of the Stat3 protein, which is known to play roles in inflammation-associated carcinogenesis, is commonly found in gastric and many other types of cancer.

Until now, however, the underlying cause of hyperactive Stat3 was unknown. The current study demonstrates that IL-11 promotes chronic inflammation and associated tumorigenesis in the stomach by inducing excessive activation of Stat3. The study used both genetic and pharmacologic inhibitors to show that blocking this signaling pathway prevented or reduced tumorigenesis in a mouse model of inflammation-dependent human gastric cancer.

“Although we made this discovery in a mouse model, we expect it to be highly relevant to the clinic because of the striking similarity in gastric tumour development and appearance between mice and men,” says the lead author of the study, Professor Matthias Ernst from the LICR Melbourne Branch. “The clear link between inhibition of IL-11/Stat3 activity and suppression of gastric tumorigenesis that we identified supports the further development of pharmacologic agents that target these molecules for the treatment of gastric and potentially other cancers. We believe that we have a very relevant model in our hand for the preclinical assessment of such compounds as well as for the identification of potential markers that may ultimately help in the early detection of disease.

Source: Ludwig Institute for Cancer Research

Explore further: Revealed: Helicobacter pylori's secret weapon

Related Stories

Revealed: Helicobacter pylori's secret weapon

August 14, 2015

Discovered in 1982, Helicobacter pylori (H. pylori) is a disease-causing bacterium that survives in our stomachs despite the harsh acidic conditions. It is estimated that one in two people have got it, though most won't ever ...

New material opens possibilities for super-long-acting pills

July 28, 2015

Medical devices designed to reside in the stomach have a variety of applications, including prolonged drug delivery, electronic monitoring, and weight-loss intervention. However, these devices, often created with nondegradable ...

Cracking the sea cucumber code

July 1, 2015

The export value of Australian Holothurians (better known as humble sea cucumbers) is rising after Flinders researchers start to unravel their nutritional and medicinal value.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.