Physics Advance Leads to a Better Understanding of Optics at the Atomic Scale

April 28, 2008

An advance by North Carolina State University physicists improves our understanding of how light interacts with matter, and could make possible the development of new integrated-circuit technologies that result in faster computers that use less energy.

Distinguished University Professor Dr. David Aspnes and post-doctoral Research Associate Dr. Eric Adles published a paper in the April 15 issue of Physical Review B on second-harmonic generation - or how wavelengths of light are shortened upon interaction with materials. The editors highlighted the work as an exceptional paper in the issue.

Aspnes explains that the research could be used to further our understanding of how materials bond to each other - such as silicon and next-generation insulating materials for integrated-circuit technologies. Application of this advance could aid researchers in selecting and processing materials that bond to silicon more uniformly, resulting in faster computers that utilize energy more efficiently.

Adles says the research allows scientists and engineers to use nonlinear-optical spectroscopy - which examines light reflected, absorbed or produced by a substance to determine its physical properties - to obtain more accurate information on a substance at the atomic scale. For example, the research could be used to get better data on the physical properties of the "interface" - the one-atom-thick layer where two materials bond to each other. Essentially, Adles says, the results provide a "key" that can be used by researchers to analyze spectroscopy data. Previously, scientists could collect such data on the interface, but had no means of interpreting it correctly on the atomic scale.

Aspnes says the goal of the research was to "improve our understanding of how things work," but notes that it also gives others the tools to better analyze data and therefore gives manufacturers and industry scientists the opportunity to make better decisions about how best to move forward.

Aspnes is a professor of physics at NC State and a member of the National Academy of Sciences.

Source: North Carolina State University

Explore further: Nanoscale physics underlie new telecommunications technology

Related Stories

The art and beauty of general relativity

November 26, 2015

One hundred years ago this month, an obscure German physicist named Albert Einstein presented to the Prussian Academy of Science his General Theory of Relativity. Nothing prior had prepared scientists for such a radical re-envisioning ...

What have plants ever done for us?

November 25, 2015

They provide the food we eat, the medicines we take, the fuel we use – and, of course, the oxygen we breathe. Plants have been indispensable to human beings for millennia, having a profound and often unexpected impact on ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.