Physics Advance Leads to a Better Understanding of Optics at the Atomic Scale

Apr 28, 2008

An advance by North Carolina State University physicists improves our understanding of how light interacts with matter, and could make possible the development of new integrated-circuit technologies that result in faster computers that use less energy.

Distinguished University Professor Dr. David Aspnes and post-doctoral Research Associate Dr. Eric Adles published a paper in the April 15 issue of Physical Review B on second-harmonic generation - or how wavelengths of light are shortened upon interaction with materials. The editors highlighted the work as an exceptional paper in the issue.

Aspnes explains that the research could be used to further our understanding of how materials bond to each other - such as silicon and next-generation insulating materials for integrated-circuit technologies. Application of this advance could aid researchers in selecting and processing materials that bond to silicon more uniformly, resulting in faster computers that utilize energy more efficiently.

Adles says the research allows scientists and engineers to use nonlinear-optical spectroscopy - which examines light reflected, absorbed or produced by a substance to determine its physical properties - to obtain more accurate information on a substance at the atomic scale. For example, the research could be used to get better data on the physical properties of the "interface" - the one-atom-thick layer where two materials bond to each other. Essentially, Adles says, the results provide a "key" that can be used by researchers to analyze spectroscopy data. Previously, scientists could collect such data on the interface, but had no means of interpreting it correctly on the atomic scale.

Aspnes says the goal of the research was to "improve our understanding of how things work," but notes that it also gives others the tools to better analyze data and therefore gives manufacturers and industry scientists the opportunity to make better decisions about how best to move forward.

Aspnes is a professor of physics at NC State and a member of the National Academy of Sciences.

Source: North Carolina State University

Explore further: Breakthrough brings optical data transport closer to replacing wires

Related Stories

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Recommended for you

Shedding light on untapped information in photons

May 25, 2015

Conventional optical imaging systems today largely limit themselves to the measurement of light intensity, providing two-dimensional renderings of three-dimensional scenes and ignoring significant amounts ...

The art of hand-polishing precision optics

May 25, 2015

Growing up in a household of artists and engineers, Peter Thelin was destined for a career in which artistry mattered. Only for him, art has come in the form of manipulating the shapes, sizes and qualities of optics. And ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.