Photoluminescence in nano-needles

April 22, 2008

Silicon is the workhorse among semiconductors in electronics. But in opto-electronics, where light signals are processed along with electronic signals, a semiconductor that is capable of emitting light is needed, which silicon can't do very well. Here gallium-arsenide (GaAs) is the workhorse, especially in the creation of light emitting diodes (LED) and LED lasers.

Scientists at the University of California, Berkeley have now grown GaAs structures into the shape of narrow needles which, when optically pumped, emit light with high brightness. The needles are approximately 3 to 4 microns long and taper at an angle of 6 to 9 degrees down to tips approximately 2 to 5 nanometers across.

These needles are not yet lasers; creating them will be the next step. This represents the first time a lab has been able to fashion GaAs into a defect-free crystal structure (technical name: wurtzite) exactly like this on a silicon substrate and without the use of catalysts.

Lead researcher Michael Moewe says that, in addition to optoelectronic devices, he expects the needles to be valuable in such applications as atomic force microscopy (AFM), where the sharp tips can be grown in arrays without further etching or processing steps. Some believe that AFM arrays, besides speeding up the recording of nearly atomic-resolution images of surfaces (allowing one to create atomic movies), might be used to create a new form of data storage by influencing the atoms in the sample. The needles also may be used in producing tip-enhanced Raman spectroscopy.

Raman spectroscopy is a process in which the energy levels of molecules are determined by shining light at a known frequency into the sample and then observing the frequency of the outgoing light. Delivering light from a sharp tip allows a much more targeted examination of the sample, possibly even permitting the spectroscopic study of single molecules.

The research will be presented at the 2008 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS) May 4-9 at the San Jose McEnery Convention Center in San Jose, Calif.

Source: Optical Society of America

Explore further: Oceanographers solve mystery of beach explosion

Related Stories

Oceanographers solve mystery of beach explosion

August 13, 2015

When an explosion beneath the sand at Salty Brine State Beach in Narragansett injured a visiting vacationer, state and local police and the bomb squad found no evidence of what may have caused the blast. So state officials ...

A model for ageing

August 7, 2015

Life is short, especially for the killifish, Nothobranchius furzeri: It lives for only a few months and then its time is up. During that short lifespan it passes through every phase of life from larva to venerable old fish. ...

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

Light replaces the needle

January 21, 2015

One in twelve children are born prematurely in Switzerland. If hypoglycemia develops in these premature babies and persists for over an hour, it can affect brain development. In order to prevent this, the babies' blood sugar ...

Recommended for you

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.