U of M researchers identify process that may help treat Parkinson's, spinal cord injuries

Apr 16, 2008

A new discovery by University of Minnesota researchers may lead to a better understanding of how the spinal cord controls how people walk. These insights could help lead to treatments for central nervous system maladies such as Parkinson's disease and spinal cord injuries.

The study, headed by Joshua Puhl, Ph.D., and Karen Mesce, Ph.D., in the Departments of Entomology and Neuroscience, discovered it’s possible that the human nervous system – within each segment or region of spinal cord – may have its own “unit burst generator” to control rhythmic movements such as walking.

By studying a simpler model of locomotion, in the medicinal leech, the research shows where these unit burst generators reside and that each nerve cord segment has a complete generator. When a neuron fires, it sets off a chain reaction that gives rise to rhythmic movement. Once those circuits are turned on, the body essentially goes on autopilot.

Mesce and her research group targeted the segmented leech for study because they have fewer and larger neurons – making them easier to study.

The study was published today online in the Journal of Neuroscience.

“For most of us, we can chew gum and walk at the same time,” Mesce said. “We do not have to remind ourselves to place the right leg out first, bring it back and do the same for the other leg. So how does the nervous system control rhythmic behaviors like walking or crawling"”

Furthermore, and perhaps just as important, the study found that dopamine – a common human hormone – can turn each of these complete generator units on.

Since dopamine regulates movements and activates those unit burst generators, the next step will be figuring out how dopamine makes individual neurons more or less active.

“Because dopamine affects movement in many different animals, including humans, our studies may help to identify treatments for Parkinson’s patients and those with spinal cord injury,” Mesce said.

Source: University of Minnesota

Explore further: Human stem cell model reveals molecular cues critical to neurovascular unit formation

Related Stories

Architects to hatch Ecocapsule as low-energy house

1 hour ago

Where people call home depends on varied factors, from poverty level to personal philosophy to vanity to community pressure. Ecocapsule appears to be the result of special factors, a team of architects applying ...

California farmers agree to drastically cut water use

4 hours ago

California farmers who hold some of the state's strongest water rights avoided the threat of deep mandatory cuts when the state accepted their proposal to voluntarily reduce consumption by 25 percent amid ...

Apple may deliver ways to rev up the iPad, report says

4 hours ago

MacRumors last month said that the latest numbers from market research firm IDC's Worldwide Quarterly Tablet Tracker revealed Apple stayed on as the largest vendor in a declining tablet market. The iPad ...

Recommended for you

Scientists turn blood into neural cells

May 21, 2015

Scientists at McMaster University have discovered how to make adult sensory neurons from human patients simply by having them roll up their sleeve and providing a blood sample.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.