Mitosis gets harder thanks to new gene discovery

April 3, 2008

A biological process taught to every pupil studying science at high school has just become a little more complicated thanks to a new discovery published today.

Scientists from the University of Bath have found that a protein called RASSF7 is essential for mitosis, the process by which a cell divides in two.

In research published in the journal Molecular Biology of the Cell, the scientists have shown that the protein is essential for building the microtubules that allow the two halves of the cell to slide apart.

“What makes mitosis so interesting is that it is one of the biological processes that everyone remembers from their days at school,” said Dr Andrew Chalmers from the University’s Department of Biology & Biochemistry.

“As well as being one of Nature’s most important processes, our interest in mitosis stems from the fact that if you want to kill cancer cells, then stopping them from dividing is a useful way of doing this.

“Several cancer treatments block cell division by targeting microtubules, Taxol is a well known example. It is even possible that RASSF7 might be a future drug target”.

During the different phases of mitosis the pairs of chromosomes within the cell condense and attach to microtubule fibres that pull the sister chromatids to opposite sides of the cell.

The cell then divides in cytokinesis, to produce two identical daughter cells.

RASSF7 is the latest of a battery of proteins involved in managing the complex process of mitosis.

“During mitosis, the chromosomes containing the DNA are pulled apart in two halves by an array of microtubules centred on the centrosomes,” said Dr Chalmers.

“Without the RASSF7 protein, the microtubules do not develop properly and cell division is halted.

“This is the first functional study of this protein, and we hope to extend our knowledge of how it works in the future.”

The research was funded by the Medical Research Council.

The work was carried out in Dr Chalmers laboratory by Dr Victoria Sherwood and two final year undergraduate project students from the University, Ria Manbodh and Carol Sheppard.

Dr Sherwood will now continue her research on cancer at a new job at the Lund University
Clinical Research Centre, Sweden.

Source: University of Bath

Explore further: Researchers achieve record 3.5 Angstroms resolution and visualize action of major microtubule-regulating protein

Related Stories

New cell division mechanism discovered

July 13, 2015

Canadian and British researchers have discovered that chromosomes play an active role in animal cell division. This occurs at a precise stage - cytokinesis - when the cell splits into two new daughter cells. It was observed ...

What makes cell division accurate?

January 23, 2014

As all school-children learn, cells divide using a process called mitosis, which consists of a number of phases during which duplicate copies of the cell's DNA-containing chromosomes are pulled apart and separated into two ...

EGF growth factor accelerates cell division, study finds

May 14, 2013

Biologists at Heidelberg University have discovered new approaches for the treatment of cancer. They investigated how a special signalling molecule, the epidermal growth factor (EGF), stimulates the separation of chromosomes ...

Recommended for you

Chemists solve major piece of cellular mystery

August 27, 2015

Not just anything is allowed to enter the nucleus, the heart of eukaryotic cells where, among other things, genetic information is stored. A double membrane, called the nuclear envelope, serves as a wall, protecting the contents ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

zevkirsh
1 / 5 (1) Apr 03, 2008
amazing ! the new research about rotifiers will be interesting. how do the centromeres pull apart 4 pairs of dna for meiosis?
zeev

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.